add functions/vendor files

This commit is contained in:
Reed Allman
2017-06-11 02:05:36 -07:00
parent 6ee9c1fa0a
commit f2c7aa5ee6
7294 changed files with 1629834 additions and 0 deletions

139
vendor/github.com/docker/distribution/digest/digest.go generated vendored Normal file
View File

@@ -0,0 +1,139 @@
package digest
import (
"fmt"
"hash"
"io"
"regexp"
"strings"
)
const (
// DigestSha256EmptyTar is the canonical sha256 digest of empty data
DigestSha256EmptyTar = "sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
)
// Digest allows simple protection of hex formatted digest strings, prefixed
// by their algorithm. Strings of type Digest have some guarantee of being in
// the correct format and it provides quick access to the components of a
// digest string.
//
// The following is an example of the contents of Digest types:
//
// sha256:7173b809ca12ec5dee4506cd86be934c4596dd234ee82c0662eac04a8c2c71dc
//
// This allows to abstract the digest behind this type and work only in those
// terms.
type Digest string
// NewDigest returns a Digest from alg and a hash.Hash object.
func NewDigest(alg Algorithm, h hash.Hash) Digest {
return NewDigestFromBytes(alg, h.Sum(nil))
}
// NewDigestFromBytes returns a new digest from the byte contents of p.
// Typically, this can come from hash.Hash.Sum(...) or xxx.SumXXX(...)
// functions. This is also useful for rebuilding digests from binary
// serializations.
func NewDigestFromBytes(alg Algorithm, p []byte) Digest {
return Digest(fmt.Sprintf("%s:%x", alg, p))
}
// NewDigestFromHex returns a Digest from alg and a the hex encoded digest.
func NewDigestFromHex(alg, hex string) Digest {
return Digest(fmt.Sprintf("%s:%s", alg, hex))
}
// DigestRegexp matches valid digest types.
var DigestRegexp = regexp.MustCompile(`[a-zA-Z0-9-_+.]+:[a-fA-F0-9]+`)
// DigestRegexpAnchored matches valid digest types, anchored to the start and end of the match.
var DigestRegexpAnchored = regexp.MustCompile(`^` + DigestRegexp.String() + `$`)
var (
// ErrDigestInvalidFormat returned when digest format invalid.
ErrDigestInvalidFormat = fmt.Errorf("invalid checksum digest format")
// ErrDigestInvalidLength returned when digest has invalid length.
ErrDigestInvalidLength = fmt.Errorf("invalid checksum digest length")
// ErrDigestUnsupported returned when the digest algorithm is unsupported.
ErrDigestUnsupported = fmt.Errorf("unsupported digest algorithm")
)
// ParseDigest parses s and returns the validated digest object. An error will
// be returned if the format is invalid.
func ParseDigest(s string) (Digest, error) {
d := Digest(s)
return d, d.Validate()
}
// FromReader returns the most valid digest for the underlying content using
// the canonical digest algorithm.
func FromReader(rd io.Reader) (Digest, error) {
return Canonical.FromReader(rd)
}
// FromBytes digests the input and returns a Digest.
func FromBytes(p []byte) Digest {
return Canonical.FromBytes(p)
}
// Validate checks that the contents of d is a valid digest, returning an
// error if not.
func (d Digest) Validate() error {
s := string(d)
if !DigestRegexpAnchored.MatchString(s) {
return ErrDigestInvalidFormat
}
i := strings.Index(s, ":")
if i < 0 {
return ErrDigestInvalidFormat
}
// case: "sha256:" with no hex.
if i+1 == len(s) {
return ErrDigestInvalidFormat
}
switch algorithm := Algorithm(s[:i]); algorithm {
case SHA256, SHA384, SHA512:
if algorithm.Size()*2 != len(s[i+1:]) {
return ErrDigestInvalidLength
}
break
default:
return ErrDigestUnsupported
}
return nil
}
// Algorithm returns the algorithm portion of the digest. This will panic if
// the underlying digest is not in a valid format.
func (d Digest) Algorithm() Algorithm {
return Algorithm(d[:d.sepIndex()])
}
// Hex returns the hex digest portion of the digest. This will panic if the
// underlying digest is not in a valid format.
func (d Digest) Hex() string {
return string(d[d.sepIndex()+1:])
}
func (d Digest) String() string {
return string(d)
}
func (d Digest) sepIndex() int {
i := strings.Index(string(d), ":")
if i < 0 {
panic("could not find ':' in digest: " + d)
}
return i
}

View File

@@ -0,0 +1,82 @@
package digest
import (
"testing"
)
func TestParseDigest(t *testing.T) {
for _, testcase := range []struct {
input string
err error
algorithm Algorithm
hex string
}{
{
input: "sha256:e58fcf7418d4390dec8e8fb69d88c06ec07039d651fedd3aa72af9972e7d046b",
algorithm: "sha256",
hex: "e58fcf7418d4390dec8e8fb69d88c06ec07039d651fedd3aa72af9972e7d046b",
},
{
input: "sha384:d3fc7881460b7e22e3d172954463dddd7866d17597e7248453c48b3e9d26d9596bf9c4a9cf8072c9d5bad76e19af801d",
algorithm: "sha384",
hex: "d3fc7881460b7e22e3d172954463dddd7866d17597e7248453c48b3e9d26d9596bf9c4a9cf8072c9d5bad76e19af801d",
},
{
// empty hex
input: "sha256:",
err: ErrDigestInvalidFormat,
},
{
// just hex
input: "d41d8cd98f00b204e9800998ecf8427e",
err: ErrDigestInvalidFormat,
},
{
// not hex
input: "sha256:d41d8cd98f00b204e9800m98ecf8427e",
err: ErrDigestInvalidFormat,
},
{
// too short
input: "sha256:abcdef0123456789",
err: ErrDigestInvalidLength,
},
{
// too short (from different algorithm)
input: "sha512:abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789",
err: ErrDigestInvalidLength,
},
{
input: "foo:d41d8cd98f00b204e9800998ecf8427e",
err: ErrDigestUnsupported,
},
} {
digest, err := ParseDigest(testcase.input)
if err != testcase.err {
t.Fatalf("error differed from expected while parsing %q: %v != %v", testcase.input, err, testcase.err)
}
if testcase.err != nil {
continue
}
if digest.Algorithm() != testcase.algorithm {
t.Fatalf("incorrect algorithm for parsed digest: %q != %q", digest.Algorithm(), testcase.algorithm)
}
if digest.Hex() != testcase.hex {
t.Fatalf("incorrect hex for parsed digest: %q != %q", digest.Hex(), testcase.hex)
}
// Parse string return value and check equality
newParsed, err := ParseDigest(digest.String())
if err != nil {
t.Fatalf("unexpected error parsing input %q: %v", testcase.input, err)
}
if newParsed != digest {
t.Fatalf("expected equal: %q != %q", newParsed, digest)
}
}
}

View File

@@ -0,0 +1,155 @@
package digest
import (
"crypto"
"fmt"
"hash"
"io"
)
// Algorithm identifies and implementation of a digester by an identifier.
// Note the that this defines both the hash algorithm used and the string
// encoding.
type Algorithm string
// supported digest types
const (
SHA256 Algorithm = "sha256" // sha256 with hex encoding
SHA384 Algorithm = "sha384" // sha384 with hex encoding
SHA512 Algorithm = "sha512" // sha512 with hex encoding
// Canonical is the primary digest algorithm used with the distribution
// project. Other digests may be used but this one is the primary storage
// digest.
Canonical = SHA256
)
var (
// TODO(stevvooe): Follow the pattern of the standard crypto package for
// registration of digests. Effectively, we are a registerable set and
// common symbol access.
// algorithms maps values to hash.Hash implementations. Other algorithms
// may be available but they cannot be calculated by the digest package.
algorithms = map[Algorithm]crypto.Hash{
SHA256: crypto.SHA256,
SHA384: crypto.SHA384,
SHA512: crypto.SHA512,
}
)
// Available returns true if the digest type is available for use. If this
// returns false, New and Hash will return nil.
func (a Algorithm) Available() bool {
h, ok := algorithms[a]
if !ok {
return false
}
// check availability of the hash, as well
return h.Available()
}
func (a Algorithm) String() string {
return string(a)
}
// Size returns number of bytes returned by the hash.
func (a Algorithm) Size() int {
h, ok := algorithms[a]
if !ok {
return 0
}
return h.Size()
}
// Set implemented to allow use of Algorithm as a command line flag.
func (a *Algorithm) Set(value string) error {
if value == "" {
*a = Canonical
} else {
// just do a type conversion, support is queried with Available.
*a = Algorithm(value)
}
return nil
}
// New returns a new digester for the specified algorithm. If the algorithm
// does not have a digester implementation, nil will be returned. This can be
// checked by calling Available before calling New.
func (a Algorithm) New() Digester {
return &digester{
alg: a,
hash: a.Hash(),
}
}
// Hash returns a new hash as used by the algorithm. If not available, the
// method will panic. Check Algorithm.Available() before calling.
func (a Algorithm) Hash() hash.Hash {
if !a.Available() {
// NOTE(stevvooe): A missing hash is usually a programming error that
// must be resolved at compile time. We don't import in the digest
// package to allow users to choose their hash implementation (such as
// when using stevvooe/resumable or a hardware accelerated package).
//
// Applications that may want to resolve the hash at runtime should
// call Algorithm.Available before call Algorithm.Hash().
panic(fmt.Sprintf("%v not available (make sure it is imported)", a))
}
return algorithms[a].New()
}
// FromReader returns the digest of the reader using the algorithm.
func (a Algorithm) FromReader(rd io.Reader) (Digest, error) {
digester := a.New()
if _, err := io.Copy(digester.Hash(), rd); err != nil {
return "", err
}
return digester.Digest(), nil
}
// FromBytes digests the input and returns a Digest.
func (a Algorithm) FromBytes(p []byte) Digest {
digester := a.New()
if _, err := digester.Hash().Write(p); err != nil {
// Writes to a Hash should never fail. None of the existing
// hash implementations in the stdlib or hashes vendored
// here can return errors from Write. Having a panic in this
// condition instead of having FromBytes return an error value
// avoids unnecessary error handling paths in all callers.
panic("write to hash function returned error: " + err.Error())
}
return digester.Digest()
}
// TODO(stevvooe): Allow resolution of verifiers using the digest type and
// this registration system.
// Digester calculates the digest of written data. Writes should go directly
// to the return value of Hash, while calling Digest will return the current
// value of the digest.
type Digester interface {
Hash() hash.Hash // provides direct access to underlying hash instance.
Digest() Digest
}
// digester provides a simple digester definition that embeds a hasher.
type digester struct {
alg Algorithm
hash hash.Hash
}
func (d *digester) Hash() hash.Hash {
return d.hash
}
func (d *digester) Digest() Digest {
return NewDigest(d.alg, d.hash)
}

View File

@@ -0,0 +1,21 @@
// +build !noresumabledigest
package digest
import (
"testing"
"github.com/stevvooe/resumable"
_ "github.com/stevvooe/resumable/sha256"
)
// TestResumableDetection just ensures that the resumable capability of a hash
// is exposed through the digester type, which is just a hash plus a Digest
// method.
func TestResumableDetection(t *testing.T) {
d := Canonical.New()
if _, ok := d.Hash().(resumable.Hash); !ok {
t.Fatalf("expected digester to implement resumable.Hash: %#v, %v", d, d.Hash())
}
}

42
vendor/github.com/docker/distribution/digest/doc.go generated vendored Normal file
View File

@@ -0,0 +1,42 @@
// Package digest provides a generalized type to opaquely represent message
// digests and their operations within the registry. The Digest type is
// designed to serve as a flexible identifier in a content-addressable system.
// More importantly, it provides tools and wrappers to work with
// hash.Hash-based digests with little effort.
//
// Basics
//
// The format of a digest is simply a string with two parts, dubbed the
// "algorithm" and the "digest", separated by a colon:
//
// <algorithm>:<digest>
//
// An example of a sha256 digest representation follows:
//
// sha256:7173b809ca12ec5dee4506cd86be934c4596dd234ee82c0662eac04a8c2c71dc
//
// In this case, the string "sha256" is the algorithm and the hex bytes are
// the "digest".
//
// Because the Digest type is simply a string, once a valid Digest is
// obtained, comparisons are cheap, quick and simple to express with the
// standard equality operator.
//
// Verification
//
// The main benefit of using the Digest type is simple verification against a
// given digest. The Verifier interface, modeled after the stdlib hash.Hash
// interface, provides a common write sink for digest verification. After
// writing is complete, calling the Verifier.Verified method will indicate
// whether or not the stream of bytes matches the target digest.
//
// Missing Features
//
// In addition to the above, we intend to add the following features to this
// package:
//
// 1. A Digester type that supports write sink digest calculation.
//
// 2. Suspend and resume of ongoing digest calculations to support efficient digest verification in the registry.
//
package digest

245
vendor/github.com/docker/distribution/digest/set.go generated vendored Normal file
View File

@@ -0,0 +1,245 @@
package digest
import (
"errors"
"sort"
"strings"
"sync"
)
var (
// ErrDigestNotFound is used when a matching digest
// could not be found in a set.
ErrDigestNotFound = errors.New("digest not found")
// ErrDigestAmbiguous is used when multiple digests
// are found in a set. None of the matching digests
// should be considered valid matches.
ErrDigestAmbiguous = errors.New("ambiguous digest string")
)
// Set is used to hold a unique set of digests which
// may be easily referenced by easily referenced by a string
// representation of the digest as well as short representation.
// The uniqueness of the short representation is based on other
// digests in the set. If digests are omitted from this set,
// collisions in a larger set may not be detected, therefore it
// is important to always do short representation lookups on
// the complete set of digests. To mitigate collisions, an
// appropriately long short code should be used.
type Set struct {
mutex sync.RWMutex
entries digestEntries
}
// NewSet creates an empty set of digests
// which may have digests added.
func NewSet() *Set {
return &Set{
entries: digestEntries{},
}
}
// checkShortMatch checks whether two digests match as either whole
// values or short values. This function does not test equality,
// rather whether the second value could match against the first
// value.
func checkShortMatch(alg Algorithm, hex, shortAlg, shortHex string) bool {
if len(hex) == len(shortHex) {
if hex != shortHex {
return false
}
if len(shortAlg) > 0 && string(alg) != shortAlg {
return false
}
} else if !strings.HasPrefix(hex, shortHex) {
return false
} else if len(shortAlg) > 0 && string(alg) != shortAlg {
return false
}
return true
}
// Lookup looks for a digest matching the given string representation.
// If no digests could be found ErrDigestNotFound will be returned
// with an empty digest value. If multiple matches are found
// ErrDigestAmbiguous will be returned with an empty digest value.
func (dst *Set) Lookup(d string) (Digest, error) {
dst.mutex.RLock()
defer dst.mutex.RUnlock()
if len(dst.entries) == 0 {
return "", ErrDigestNotFound
}
var (
searchFunc func(int) bool
alg Algorithm
hex string
)
dgst, err := ParseDigest(d)
if err == ErrDigestInvalidFormat {
hex = d
searchFunc = func(i int) bool {
return dst.entries[i].val >= d
}
} else {
hex = dgst.Hex()
alg = dgst.Algorithm()
searchFunc = func(i int) bool {
if dst.entries[i].val == hex {
return dst.entries[i].alg >= alg
}
return dst.entries[i].val >= hex
}
}
idx := sort.Search(len(dst.entries), searchFunc)
if idx == len(dst.entries) || !checkShortMatch(dst.entries[idx].alg, dst.entries[idx].val, string(alg), hex) {
return "", ErrDigestNotFound
}
if dst.entries[idx].alg == alg && dst.entries[idx].val == hex {
return dst.entries[idx].digest, nil
}
if idx+1 < len(dst.entries) && checkShortMatch(dst.entries[idx+1].alg, dst.entries[idx+1].val, string(alg), hex) {
return "", ErrDigestAmbiguous
}
return dst.entries[idx].digest, nil
}
// Add adds the given digest to the set. An error will be returned
// if the given digest is invalid. If the digest already exists in the
// set, this operation will be a no-op.
func (dst *Set) Add(d Digest) error {
if err := d.Validate(); err != nil {
return err
}
dst.mutex.Lock()
defer dst.mutex.Unlock()
entry := &digestEntry{alg: d.Algorithm(), val: d.Hex(), digest: d}
searchFunc := func(i int) bool {
if dst.entries[i].val == entry.val {
return dst.entries[i].alg >= entry.alg
}
return dst.entries[i].val >= entry.val
}
idx := sort.Search(len(dst.entries), searchFunc)
if idx == len(dst.entries) {
dst.entries = append(dst.entries, entry)
return nil
} else if dst.entries[idx].digest == d {
return nil
}
entries := append(dst.entries, nil)
copy(entries[idx+1:], entries[idx:len(entries)-1])
entries[idx] = entry
dst.entries = entries
return nil
}
// Remove removes the given digest from the set. An err will be
// returned if the given digest is invalid. If the digest does
// not exist in the set, this operation will be a no-op.
func (dst *Set) Remove(d Digest) error {
if err := d.Validate(); err != nil {
return err
}
dst.mutex.Lock()
defer dst.mutex.Unlock()
entry := &digestEntry{alg: d.Algorithm(), val: d.Hex(), digest: d}
searchFunc := func(i int) bool {
if dst.entries[i].val == entry.val {
return dst.entries[i].alg >= entry.alg
}
return dst.entries[i].val >= entry.val
}
idx := sort.Search(len(dst.entries), searchFunc)
// Not found if idx is after or value at idx is not digest
if idx == len(dst.entries) || dst.entries[idx].digest != d {
return nil
}
entries := dst.entries
copy(entries[idx:], entries[idx+1:])
entries = entries[:len(entries)-1]
dst.entries = entries
return nil
}
// All returns all the digests in the set
func (dst *Set) All() []Digest {
dst.mutex.RLock()
defer dst.mutex.RUnlock()
retValues := make([]Digest, len(dst.entries))
for i := range dst.entries {
retValues[i] = dst.entries[i].digest
}
return retValues
}
// ShortCodeTable returns a map of Digest to unique short codes. The
// length represents the minimum value, the maximum length may be the
// entire value of digest if uniqueness cannot be achieved without the
// full value. This function will attempt to make short codes as short
// as possible to be unique.
func ShortCodeTable(dst *Set, length int) map[Digest]string {
dst.mutex.RLock()
defer dst.mutex.RUnlock()
m := make(map[Digest]string, len(dst.entries))
l := length
resetIdx := 0
for i := 0; i < len(dst.entries); i++ {
var short string
extended := true
for extended {
extended = false
if len(dst.entries[i].val) <= l {
short = dst.entries[i].digest.String()
} else {
short = dst.entries[i].val[:l]
for j := i + 1; j < len(dst.entries); j++ {
if checkShortMatch(dst.entries[j].alg, dst.entries[j].val, "", short) {
if j > resetIdx {
resetIdx = j
}
extended = true
} else {
break
}
}
if extended {
l++
}
}
}
m[dst.entries[i].digest] = short
if i >= resetIdx {
l = length
}
}
return m
}
type digestEntry struct {
alg Algorithm
val string
digest Digest
}
type digestEntries []*digestEntry
func (d digestEntries) Len() int {
return len(d)
}
func (d digestEntries) Less(i, j int) bool {
if d[i].val != d[j].val {
return d[i].val < d[j].val
}
return d[i].alg < d[j].alg
}
func (d digestEntries) Swap(i, j int) {
d[i], d[j] = d[j], d[i]
}

View File

@@ -0,0 +1,368 @@
package digest
import (
"crypto/sha256"
"encoding/binary"
"math/rand"
"testing"
)
func assertEqualDigests(t *testing.T, d1, d2 Digest) {
if d1 != d2 {
t.Fatalf("Digests do not match:\n\tActual: %s\n\tExpected: %s", d1, d2)
}
}
func TestLookup(t *testing.T) {
digests := []Digest{
"sha256:1234511111111111111111111111111111111111111111111111111111111111",
"sha256:1234111111111111111111111111111111111111111111111111111111111111",
"sha256:1234611111111111111111111111111111111111111111111111111111111111",
"sha256:5432111111111111111111111111111111111111111111111111111111111111",
"sha256:6543111111111111111111111111111111111111111111111111111111111111",
"sha256:6432111111111111111111111111111111111111111111111111111111111111",
"sha256:6542111111111111111111111111111111111111111111111111111111111111",
"sha256:6532111111111111111111111111111111111111111111111111111111111111",
}
dset := NewSet()
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
t.Fatal(err)
}
}
dgst, err := dset.Lookup("54")
if err != nil {
t.Fatal(err)
}
assertEqualDigests(t, dgst, digests[3])
dgst, err = dset.Lookup("1234")
if err == nil {
t.Fatal("Expected ambiguous error looking up: 1234")
}
if err != ErrDigestAmbiguous {
t.Fatal(err)
}
dgst, err = dset.Lookup("9876")
if err == nil {
t.Fatal("Expected ambiguous error looking up: 9876")
}
if err != ErrDigestNotFound {
t.Fatal(err)
}
dgst, err = dset.Lookup("sha256:1234")
if err == nil {
t.Fatal("Expected ambiguous error looking up: sha256:1234")
}
if err != ErrDigestAmbiguous {
t.Fatal(err)
}
dgst, err = dset.Lookup("sha256:12345")
if err != nil {
t.Fatal(err)
}
assertEqualDigests(t, dgst, digests[0])
dgst, err = dset.Lookup("sha256:12346")
if err != nil {
t.Fatal(err)
}
assertEqualDigests(t, dgst, digests[2])
dgst, err = dset.Lookup("12346")
if err != nil {
t.Fatal(err)
}
assertEqualDigests(t, dgst, digests[2])
dgst, err = dset.Lookup("12345")
if err != nil {
t.Fatal(err)
}
assertEqualDigests(t, dgst, digests[0])
}
func TestAddDuplication(t *testing.T) {
digests := []Digest{
"sha256:1234111111111111111111111111111111111111111111111111111111111111",
"sha256:1234511111111111111111111111111111111111111111111111111111111111",
"sha256:1234611111111111111111111111111111111111111111111111111111111111",
"sha256:5432111111111111111111111111111111111111111111111111111111111111",
"sha256:6543111111111111111111111111111111111111111111111111111111111111",
"sha512:65431111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"sha512:65421111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
"sha512:65321111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
}
dset := NewSet()
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
t.Fatal(err)
}
}
if len(dset.entries) != 8 {
t.Fatal("Invalid dset size")
}
if err := dset.Add(Digest("sha256:1234511111111111111111111111111111111111111111111111111111111111")); err != nil {
t.Fatal(err)
}
if len(dset.entries) != 8 {
t.Fatal("Duplicate digest insert allowed")
}
if err := dset.Add(Digest("sha384:123451111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111")); err != nil {
t.Fatal(err)
}
if len(dset.entries) != 9 {
t.Fatal("Insert with different algorithm not allowed")
}
}
func TestRemove(t *testing.T) {
digests, err := createDigests(10)
if err != nil {
t.Fatal(err)
}
dset := NewSet()
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
t.Fatal(err)
}
}
dgst, err := dset.Lookup(digests[0].String())
if err != nil {
t.Fatal(err)
}
if dgst != digests[0] {
t.Fatalf("Unexpected digest value:\n\tExpected: %s\n\tActual: %s", digests[0], dgst)
}
if err := dset.Remove(digests[0]); err != nil {
t.Fatal(err)
}
if _, err := dset.Lookup(digests[0].String()); err != ErrDigestNotFound {
t.Fatalf("Expected error %v when looking up removed digest, got %v", ErrDigestNotFound, err)
}
}
func TestAll(t *testing.T) {
digests, err := createDigests(100)
if err != nil {
t.Fatal(err)
}
dset := NewSet()
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
t.Fatal(err)
}
}
all := map[Digest]struct{}{}
for _, dgst := range dset.All() {
all[dgst] = struct{}{}
}
if len(all) != len(digests) {
t.Fatalf("Unexpected number of unique digests found:\n\tExpected: %d\n\tActual: %d", len(digests), len(all))
}
for i, dgst := range digests {
if _, ok := all[dgst]; !ok {
t.Fatalf("Missing element at position %d: %s", i, dgst)
}
}
}
func assertEqualShort(t *testing.T, actual, expected string) {
if actual != expected {
t.Fatalf("Unexpected short value:\n\tExpected: %s\n\tActual: %s", expected, actual)
}
}
func TestShortCodeTable(t *testing.T) {
digests := []Digest{
"sha256:1234111111111111111111111111111111111111111111111111111111111111",
"sha256:1234511111111111111111111111111111111111111111111111111111111111",
"sha256:1234611111111111111111111111111111111111111111111111111111111111",
"sha256:5432111111111111111111111111111111111111111111111111111111111111",
"sha256:6543111111111111111111111111111111111111111111111111111111111111",
"sha256:6432111111111111111111111111111111111111111111111111111111111111",
"sha256:6542111111111111111111111111111111111111111111111111111111111111",
"sha256:6532111111111111111111111111111111111111111111111111111111111111",
}
dset := NewSet()
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
t.Fatal(err)
}
}
dump := ShortCodeTable(dset, 2)
if len(dump) < len(digests) {
t.Fatalf("Error unexpected size: %d, expecting %d", len(dump), len(digests))
}
assertEqualShort(t, dump[digests[0]], "12341")
assertEqualShort(t, dump[digests[1]], "12345")
assertEqualShort(t, dump[digests[2]], "12346")
assertEqualShort(t, dump[digests[3]], "54")
assertEqualShort(t, dump[digests[4]], "6543")
assertEqualShort(t, dump[digests[5]], "64")
assertEqualShort(t, dump[digests[6]], "6542")
assertEqualShort(t, dump[digests[7]], "653")
}
func createDigests(count int) ([]Digest, error) {
r := rand.New(rand.NewSource(25823))
digests := make([]Digest, count)
for i := range digests {
h := sha256.New()
if err := binary.Write(h, binary.BigEndian, r.Int63()); err != nil {
return nil, err
}
digests[i] = NewDigest("sha256", h)
}
return digests, nil
}
func benchAddNTable(b *testing.B, n int) {
digests, err := createDigests(n)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
dset := &Set{entries: digestEntries(make([]*digestEntry, 0, n))}
for j := range digests {
if err = dset.Add(digests[j]); err != nil {
b.Fatal(err)
}
}
}
}
func benchLookupNTable(b *testing.B, n int, shortLen int) {
digests, err := createDigests(n)
if err != nil {
b.Fatal(err)
}
dset := &Set{entries: digestEntries(make([]*digestEntry, 0, n))}
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
b.Fatal(err)
}
}
shorts := make([]string, 0, n)
for _, short := range ShortCodeTable(dset, shortLen) {
shorts = append(shorts, short)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
if _, err = dset.Lookup(shorts[i%n]); err != nil {
b.Fatal(err)
}
}
}
func benchRemoveNTable(b *testing.B, n int) {
digests, err := createDigests(n)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
dset := &Set{entries: digestEntries(make([]*digestEntry, 0, n))}
b.StopTimer()
for j := range digests {
if err = dset.Add(digests[j]); err != nil {
b.Fatal(err)
}
}
b.StartTimer()
for j := range digests {
if err = dset.Remove(digests[j]); err != nil {
b.Fatal(err)
}
}
}
}
func benchShortCodeNTable(b *testing.B, n int, shortLen int) {
digests, err := createDigests(n)
if err != nil {
b.Fatal(err)
}
dset := &Set{entries: digestEntries(make([]*digestEntry, 0, n))}
for i := range digests {
if err := dset.Add(digests[i]); err != nil {
b.Fatal(err)
}
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShortCodeTable(dset, shortLen)
}
}
func BenchmarkAdd10(b *testing.B) {
benchAddNTable(b, 10)
}
func BenchmarkAdd100(b *testing.B) {
benchAddNTable(b, 100)
}
func BenchmarkAdd1000(b *testing.B) {
benchAddNTable(b, 1000)
}
func BenchmarkRemove10(b *testing.B) {
benchRemoveNTable(b, 10)
}
func BenchmarkRemove100(b *testing.B) {
benchRemoveNTable(b, 100)
}
func BenchmarkRemove1000(b *testing.B) {
benchRemoveNTable(b, 1000)
}
func BenchmarkLookup10(b *testing.B) {
benchLookupNTable(b, 10, 12)
}
func BenchmarkLookup100(b *testing.B) {
benchLookupNTable(b, 100, 12)
}
func BenchmarkLookup1000(b *testing.B) {
benchLookupNTable(b, 1000, 12)
}
func BenchmarkShortCode10(b *testing.B) {
benchShortCodeNTable(b, 10, 12)
}
func BenchmarkShortCode100(b *testing.B) {
benchShortCodeNTable(b, 100, 12)
}
func BenchmarkShortCode1000(b *testing.B) {
benchShortCodeNTable(b, 1000, 12)
}

View File

@@ -0,0 +1,44 @@
package digest
import (
"hash"
"io"
)
// Verifier presents a general verification interface to be used with message
// digests and other byte stream verifications. Users instantiate a Verifier
// from one of the various methods, write the data under test to it then check
// the result with the Verified method.
type Verifier interface {
io.Writer
// Verified will return true if the content written to Verifier matches
// the digest.
Verified() bool
}
// NewDigestVerifier returns a verifier that compares the written bytes
// against a passed in digest.
func NewDigestVerifier(d Digest) (Verifier, error) {
if err := d.Validate(); err != nil {
return nil, err
}
return hashVerifier{
hash: d.Algorithm().Hash(),
digest: d,
}, nil
}
type hashVerifier struct {
digest Digest
hash hash.Hash
}
func (hv hashVerifier) Write(p []byte) (n int, err error) {
return hv.hash.Write(p)
}
func (hv hashVerifier) Verified() bool {
return hv.digest == NewDigest(hv.digest.Algorithm(), hv.hash)
}

View File

@@ -0,0 +1,49 @@
package digest
import (
"bytes"
"crypto/rand"
"io"
"testing"
)
func TestDigestVerifier(t *testing.T) {
p := make([]byte, 1<<20)
rand.Read(p)
digest := FromBytes(p)
verifier, err := NewDigestVerifier(digest)
if err != nil {
t.Fatalf("unexpected error getting digest verifier: %s", err)
}
io.Copy(verifier, bytes.NewReader(p))
if !verifier.Verified() {
t.Fatalf("bytes not verified")
}
}
// TestVerifierUnsupportedDigest ensures that unsupported digest validation is
// flowing through verifier creation.
func TestVerifierUnsupportedDigest(t *testing.T) {
unsupported := Digest("bean:0123456789abcdef")
_, err := NewDigestVerifier(unsupported)
if err == nil {
t.Fatalf("expected error when creating verifier")
}
if err != ErrDigestUnsupported {
t.Fatalf("incorrect error for unsupported digest: %v", err)
}
}
// TODO(stevvooe): Add benchmarks to measure bytes/second throughput for
// DigestVerifier.
//
// The relevant benchmark for comparison can be run with the following
// commands:
//
// go test -bench . crypto/sha1
//