mirror of
https://github.com/fnproject/fn.git
synced 2022-10-28 21:29:17 +03:00
this works by having every request from the functions server kick back a FXLB-WAIT header on every request with the wait time for that function to start. the lb then keeps track on a per node+function basis an ewma of the last 10 request's wait times (to reduce jitter). now that we don't have max concurrency it's actually pretty challenging to get the wait time stuff to tick. i expect in the near future we will be throttling functions on a given node in order to induce this, but that is for another day as that code needs a lot of reworking. i tested this by introducing some arbitrary throttling (not checked in) and load spreads over nodes correctly (see images). we will also need to play with the intervals we want to use, as if you have a func with 50ms run time then basically 10 of those will rev up another node (this was before removing max_c, with max_c=1) but in any event this wires in the basic plumbing. * make docs great again. renamed lb dir to fnlb * added wait time to dashboard * wires in a ready channel to await the first pull for hot images to count in the wait time (should be otherwise useful) future: TODO rework lb code api to be pluggable + wire in data store TODO toss out first data point containing pull to not jump onto another node immediately (maybe this is actually a good thing?)
214 lines
4.9 KiB
Go
214 lines
4.9 KiB
Go
package main
|
|
|
|
import (
|
|
"errors"
|
|
"math/rand"
|
|
"sort"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/dchest/siphash"
|
|
)
|
|
|
|
// consistentHash will maintain a list of strings which can be accessed by
|
|
// keying them with a separate group of strings
|
|
type consistentHash struct {
|
|
// protects nodes
|
|
sync.RWMutex
|
|
nodes []string
|
|
|
|
loadMu sync.RWMutex
|
|
load map[string]*int64
|
|
rng *rand.Rand
|
|
}
|
|
|
|
func newCH() *consistentHash {
|
|
return &consistentHash{
|
|
rng: rand.New(&lockedSource{src: rand.NewSource(time.Now().Unix()).(rand.Source64)}),
|
|
load: make(map[string]*int64),
|
|
}
|
|
}
|
|
|
|
type lockedSource struct {
|
|
lk sync.Mutex
|
|
src rand.Source64
|
|
}
|
|
|
|
func (r *lockedSource) Int63() (n int64) {
|
|
r.lk.Lock()
|
|
n = r.src.Int63()
|
|
r.lk.Unlock()
|
|
return n
|
|
}
|
|
|
|
func (r *lockedSource) Uint64() (n uint64) {
|
|
r.lk.Lock()
|
|
n = r.src.Uint64()
|
|
r.lk.Unlock()
|
|
return n
|
|
}
|
|
|
|
func (r *lockedSource) Seed(seed int64) {
|
|
r.lk.Lock()
|
|
r.src.Seed(seed)
|
|
r.lk.Unlock()
|
|
}
|
|
|
|
func (ch *consistentHash) add(newb string) {
|
|
ch.Lock()
|
|
defer ch.Unlock()
|
|
|
|
// filter dupes, under lock. sorted, so binary search
|
|
i := sort.SearchStrings(ch.nodes, newb)
|
|
if i < len(ch.nodes) && ch.nodes[i] == newb {
|
|
return
|
|
}
|
|
ch.nodes = append(ch.nodes, newb)
|
|
// need to keep in sorted order so that hash index works across nodes
|
|
sort.Sort(sort.StringSlice(ch.nodes))
|
|
}
|
|
|
|
func (ch *consistentHash) remove(ded string) {
|
|
ch.Lock()
|
|
i := sort.SearchStrings(ch.nodes, ded)
|
|
if i < len(ch.nodes) && ch.nodes[i] == ded {
|
|
ch.nodes = append(ch.nodes[:i], ch.nodes[i+1:]...)
|
|
}
|
|
ch.Unlock()
|
|
}
|
|
|
|
// return a copy
|
|
func (ch *consistentHash) list() []string {
|
|
ch.RLock()
|
|
ret := make([]string, len(ch.nodes))
|
|
copy(ret, ch.nodes)
|
|
ch.RUnlock()
|
|
return ret
|
|
}
|
|
|
|
func (ch *consistentHash) get(key string) (string, error) {
|
|
// crc not unique enough & sha is too slow, it's 1 import
|
|
sum64 := siphash.Hash(0, 0x4c617279426f6174, []byte(key))
|
|
|
|
ch.RLock()
|
|
defer ch.RUnlock()
|
|
i := int(jumpConsistentHash(sum64, int32(len(ch.nodes))))
|
|
return ch.besti(key, i)
|
|
}
|
|
|
|
// A Fast, Minimal Memory, Consistent Hash Algorithm:
|
|
// https://arxiv.org/ftp/arxiv/papers/1406/1406.2294.pdf
|
|
func jumpConsistentHash(key uint64, num_buckets int32) int32 {
|
|
var b, j int64 = -1, 0
|
|
for j < int64(num_buckets) {
|
|
b = j
|
|
key = key*2862933555777941757 + 1
|
|
j = (b + 1) * int64((1<<31)/(key>>33)+1)
|
|
}
|
|
return int32(b)
|
|
}
|
|
|
|
// tracks last 10 samples (very fast)
|
|
const DECAY = 0.1
|
|
|
|
func ewma(old, new int64) int64 {
|
|
// TODO could 'warm' it up and drop first few samples since we'll have docker pulls / hot starts
|
|
return int64((float64(new) * DECAY) + (float64(old) * (1 - DECAY)))
|
|
}
|
|
|
|
func (ch *consistentHash) setLoad(key string, load int64) {
|
|
ch.loadMu.RLock()
|
|
l, ok := ch.load[key]
|
|
ch.loadMu.RUnlock()
|
|
if ok {
|
|
// this is a lossy ewma w/ or w/o CAS but if things are moving fast we have plenty of sample
|
|
prev := atomic.LoadInt64(l)
|
|
atomic.StoreInt64(l, ewma(prev, load))
|
|
} else {
|
|
ch.loadMu.Lock()
|
|
if _, ok := ch.load[key]; !ok {
|
|
ch.load[key] = &load
|
|
}
|
|
ch.loadMu.Unlock()
|
|
}
|
|
}
|
|
|
|
var (
|
|
ErrNoNodes = errors.New("no nodes available")
|
|
)
|
|
|
|
func loadKey(node, key string) string {
|
|
return node + "\x00" + key
|
|
}
|
|
|
|
// XXX (reed): push down fails / load into ch
|
|
func (ch *consistentHash) besti(key string, i int) (string, error) {
|
|
ch.RLock()
|
|
defer ch.RUnlock()
|
|
|
|
if len(ch.nodes) < 1 {
|
|
return "", ErrNoNodes
|
|
}
|
|
|
|
f := func(n string) string {
|
|
var load time.Duration
|
|
ch.loadMu.RLock()
|
|
loadPtr := ch.load[loadKey(n, key)]
|
|
ch.loadMu.RUnlock()
|
|
if loadPtr != nil {
|
|
load = time.Duration(atomic.LoadInt64(loadPtr))
|
|
}
|
|
|
|
const (
|
|
lowerLat = 500 * time.Millisecond
|
|
upperLat = 2 * time.Second
|
|
)
|
|
|
|
// TODO flesh out these values.
|
|
// if we send < 50% of traffic off to other nodes when loaded
|
|
// then as function scales nodes will get flooded, need to be careful.
|
|
//
|
|
// back off loaded node/function combos slightly to spread load
|
|
// TODO do we need a kind of ref counter as well so as to send functions
|
|
// to a different node while there's an outstanding call to another?
|
|
if load < lowerLat {
|
|
return n
|
|
} else if load > upperLat {
|
|
// really loaded
|
|
if ch.rng.Intn(100) < 10 { // XXX (reed): 10% could be problematic, should sliding scale prob with log(x) ?
|
|
return n
|
|
}
|
|
} else {
|
|
// 10 < x < 40, as load approaches upperLat, x decreases [linearly]
|
|
x := translate(int64(load), int64(lowerLat), int64(upperLat), 10, 40)
|
|
if ch.rng.Intn(100) < x {
|
|
return n
|
|
}
|
|
}
|
|
|
|
// return invalid node to try next node
|
|
return ""
|
|
}
|
|
|
|
for ; ; i++ {
|
|
// theoretically this could take infinite time, but practically improbable...
|
|
node := f(ch.nodes[i])
|
|
if node != "" {
|
|
return node, nil
|
|
} else if i == len(ch.nodes)-1 {
|
|
i = -1 // reset i to 0
|
|
}
|
|
}
|
|
|
|
panic("strange things are afoot at the circle k")
|
|
}
|
|
|
|
func translate(val, inFrom, inTo, outFrom, outTo int64) int {
|
|
outRange := outTo - outFrom
|
|
inRange := inTo - inFrom
|
|
inVal := val - inFrom
|
|
// we want the number to be lower as intensity increases
|
|
return int(float64(outTo) - (float64(inVal)/float64(inRange))*float64(outRange))
|
|
}
|