Files
fn-serverless/api/agent/slots.go
Tolga Ceylan 97d78c584b fn: better slot/container/request state tracking (#719)
* fn: better slot/container/request state tracking
2018-01-26 12:21:11 -08:00

318 lines
7.0 KiB
Go

package agent
import (
"context"
"crypto/sha1"
"fmt"
"sort"
"sync"
"sync/atomic"
)
//
// slotQueueMgr keeps track of hot container slotQueues where each slotQueue
// provides for multiple consumers/producers. slotQueue also stores
// a few basic stats in slotStats.
//
type Slot interface {
exec(ctx context.Context, call *call) error
Close() error
Error() error
}
// slotQueueMgr manages hot container slotQueues
type slotQueueMgr struct {
hMu sync.Mutex // protects hot
hot map[string]*slotQueue
}
// request and container states
type slotQueueStats struct {
requestStates [RequestStateMax]uint64
containerStates [ContainerStateMax]uint64
}
type slotToken struct {
slot Slot
trigger chan struct{}
id uint64
isBusy uint32
}
// LIFO queue that exposes input/output channels along
// with runner/waiter tracking for agent
type slotQueue struct {
key string
cond *sync.Cond
slots []*slotToken
nextId uint64
signaller chan bool
statsLock sync.Mutex // protects stats below
stats slotQueueStats
}
func NewSlotQueueMgr() *slotQueueMgr {
obj := &slotQueueMgr{
hot: make(map[string]*slotQueue),
}
return obj
}
func NewSlotQueue(key string) *slotQueue {
obj := &slotQueue{
key: key,
cond: sync.NewCond(new(sync.Mutex)),
slots: make([]*slotToken, 0),
signaller: make(chan bool, 1),
}
return obj
}
func (a *slotToken) acquireSlot() bool {
// let's get the lock
if !atomic.CompareAndSwapUint32(&a.isBusy, 0, 1) {
return false
}
// now we have the lock, push the trigger
close(a.trigger)
return true
}
func (a *slotQueue) ejectSlot(s *slotToken) bool {
// let's get the lock
if !atomic.CompareAndSwapUint32(&s.isBusy, 0, 1) {
return false
}
a.cond.L.Lock()
for i := 0; i < len(a.slots); i++ {
if a.slots[i].id == s.id {
a.slots = append(a.slots[:i], a.slots[i+1:]...)
break
}
}
a.cond.L.Unlock()
s.slot.Close()
// now we have the lock, push the trigger
close(s.trigger)
return true
}
func (a *slotQueue) startDequeuer(ctx context.Context) chan *slotToken {
isWaiting := false
output := make(chan *slotToken)
go func() {
<-ctx.Done()
a.cond.L.Lock()
if isWaiting {
a.cond.Broadcast()
}
a.cond.L.Unlock()
}()
go func() {
for {
a.cond.L.Lock()
isWaiting = true
for len(a.slots) <= 0 && (ctx.Err() == nil) {
a.cond.Wait()
}
isWaiting = false
if ctx.Err() != nil {
a.cond.L.Unlock()
return
}
// pop
item := a.slots[len(a.slots)-1]
a.slots = a.slots[:len(a.slots)-1]
a.cond.L.Unlock()
select {
case output <- item: // good case (dequeued)
case <-item.trigger: // ejected (eject handles cleanup)
case <-ctx.Done(): // time out or cancel from caller
// consume slot, we let the hot container queue the slot again
if item.acquireSlot() {
item.slot.Close()
}
}
}
}()
return output
}
func (a *slotQueue) queueSlot(slot Slot) *slotToken {
token := &slotToken{slot, make(chan struct{}), 0, 0}
a.cond.L.Lock()
token.id = a.nextId
a.slots = append(a.slots, token)
a.nextId += 1
a.cond.L.Unlock()
a.cond.Broadcast()
return token
}
// isIdle() returns true is there's no activity for this slot queue. This
// means no one is waiting, running or starting.
func (a *slotQueue) isIdle() bool {
var isIdle bool
a.statsLock.Lock()
isIdle = a.stats.requestStates[RequestStateWait] == 0 &&
a.stats.requestStates[RequestStateExec] == 0 &&
a.stats.containerStates[ContainerStateWait] == 0 &&
a.stats.containerStates[ContainerStateStart] == 0 &&
a.stats.containerStates[ContainerStateIdle] == 0 &&
a.stats.containerStates[ContainerStateBusy] == 0
a.statsLock.Unlock()
return isIdle
}
func (a *slotQueue) getStats() slotQueueStats {
var out slotQueueStats
a.statsLock.Lock()
out = a.stats
a.statsLock.Unlock()
return out
}
func isNewContainerNeeded(cur *slotQueueStats) bool {
idleWorkers := cur.containerStates[ContainerStateIdle]
starters := cur.containerStates[ContainerStateStart]
startWaiters := cur.containerStates[ContainerStateWait]
queuedRequests := cur.requestStates[RequestStateWait]
// we expect idle containers to immediately pick up
// any waiters. We assume non-idle containers busy.
effectiveWaiters := uint64(0)
if idleWorkers < queuedRequests {
effectiveWaiters = queuedRequests - idleWorkers
}
if effectiveWaiters == 0 {
return false
}
// we expect resource waiters to eventually transition
// into starters.
effectiveStarters := starters + startWaiters
// if containers are starting, do not start more than effective waiters
if effectiveStarters > 0 && effectiveStarters >= effectiveWaiters {
return false
}
return true
}
func (a *slotQueue) enterRequestState(reqType RequestStateType) {
if reqType > RequestStateNone && reqType < RequestStateMax {
a.statsLock.Lock()
a.stats.requestStates[reqType] += 1
a.statsLock.Unlock()
}
}
func (a *slotQueue) exitRequestState(reqType RequestStateType) {
if reqType > RequestStateNone && reqType < RequestStateMax {
a.statsLock.Lock()
a.stats.requestStates[reqType] -= 1
a.statsLock.Unlock()
}
}
func (a *slotQueue) enterContainerState(conType ContainerStateType) {
if conType > ContainerStateNone && conType < ContainerStateMax {
a.statsLock.Lock()
a.stats.containerStates[conType] += 1
a.statsLock.Unlock()
}
}
func (a *slotQueue) exitContainerState(conType ContainerStateType) {
if conType > ContainerStateNone && conType < ContainerStateMax {
a.statsLock.Lock()
a.stats.containerStates[conType] -= 1
a.statsLock.Unlock()
}
}
// getSlot must ensure that if it receives a slot, it will be returned, otherwise
// a container will be locked up forever waiting for slot to free.
func (a *slotQueueMgr) getSlotQueue(call *call) (*slotQueue, bool) {
key := getSlotQueueKey(call)
a.hMu.Lock()
slots, ok := a.hot[key]
if !ok {
slots = NewSlotQueue(key)
a.hot[key] = slots
}
a.hMu.Unlock()
return slots, !ok
}
// currently unused. But at some point, we need to age/delete old
// slotQueues.
func (a *slotQueueMgr) deleteSlotQueue(slots *slotQueue) bool {
isDeleted := false
a.hMu.Lock()
if slots.isIdle() {
delete(a.hot, slots.key)
isDeleted = true
}
a.hMu.Unlock()
return isDeleted
}
func getSlotQueueKey(call *call) string {
// return a sha1 hash of a (hopefully) unique string of all the config
// values, to make map lookups quicker [than the giant unique string]
hash := sha1.New()
fmt.Fprint(hash, call.AppName, "\x00")
fmt.Fprint(hash, call.Path, "\x00")
fmt.Fprint(hash, call.Image, "\x00")
fmt.Fprint(hash, call.Timeout, "\x00")
fmt.Fprint(hash, call.IdleTimeout, "\x00")
fmt.Fprint(hash, call.Memory, "\x00")
fmt.Fprint(hash, call.CPUs, "\x00")
fmt.Fprint(hash, call.Format, "\x00")
// we have to sort these before printing, yay. TODO do better
keys := make([]string, 0, len(call.Config))
for k := range call.Config {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
fmt.Fprint(hash, k, "\x00", call.Config[k], "\x00")
}
var buf [sha1.Size]byte
return string(hash.Sum(buf[:0]))
}