diff --git a/Gluonts_twitter_volume_forecasting.ipynb b/Gluonts_twitter_volume_forecasting.ipynb
index 44fff5e..7fce52e 100644
--- a/Gluonts_twitter_volume_forecasting.ipynb
+++ b/Gluonts_twitter_volume_forecasting.ipynb
@@ -5,7 +5,7 @@
"colab": {
"name": "Gluonts twitter volume forecasting.ipynb",
"provenance": [],
- "authorship_tag": "ABX9TyPAYWXhyZ3fbVnl/1L+Mwyg",
+ "authorship_tag": "ABX9TyPnECKy9/9x3uizOlZK+rEl",
"include_colab_link": true
},
"kernelspec": {
@@ -119,45 +119,144 @@
{
"cell_type": "code",
"metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 552
- },
- "id": "vVNMTd-BEWHG",
- "outputId": "e51662c7-2b14-4a14-e944-34a69d5a9f7f"
+ "id": "vVNMTd-BEWHG"
},
"source": [
"from gluonts.dataset import common\r\n",
"from gluonts.model import deepar\r\n",
"from gluonts.trainer import Trainer\r\n",
"\r\n",
- "import pandas as pd\r\n",
- "\r\n",
+ "import pandas as pd"
+ ],
+ "execution_count": 6,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 235
+ },
+ "id": "zp2hdhzlFhlg",
+ "outputId": "49cc7e56-9c58-4798-9e5a-d71c1c56b05a"
+ },
+ "source": [
"url = \"https://raw.githubusercontent.com/numenta/NAB/master/data/realTweets/Twitter_volume_AMZN.csv\"\r\n",
"df = pd.read_csv(url, header=0, index_col=0)\r\n",
+ "df.head()"
+ ],
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " value | \n",
+ "
\n",
+ " \n",
+ " | timestamp | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2015-02-26 21:42:53 | \n",
+ " 57 | \n",
+ "
\n",
+ " \n",
+ " | 2015-02-26 21:47:53 | \n",
+ " 43 | \n",
+ "
\n",
+ " \n",
+ " | 2015-02-26 21:52:53 | \n",
+ " 55 | \n",
+ "
\n",
+ " \n",
+ " | 2015-02-26 21:57:53 | \n",
+ " 64 | \n",
+ "
\n",
+ " \n",
+ " | 2015-02-26 22:02:53 | \n",
+ " 93 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " value\n",
+ "timestamp \n",
+ "2015-02-26 21:42:53 57\n",
+ "2015-02-26 21:47:53 43\n",
+ "2015-02-26 21:52:53 55\n",
+ "2015-02-26 21:57:53 64\n",
+ "2015-02-26 22:02:53 93"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 7
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "AAMItQe-FmmX"
+ },
+ "source": [
"data = common.ListDataset([{\r\n",
" \"start\": df.index[0],\r\n",
" \"target\": df.value[:\"2015-04-05 00:00:00\"]\r\n",
"}],\r\n",
- " freq=\"5min\")\r\n",
- "\r\n",
+ " freq=\"5min\")\r\n"
+ ],
+ "execution_count": 8,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Gqxl1PoDFpjh",
+ "outputId": "fddc6dcf-d859-48a2-a561-cc3f546a6685"
+ },
+ "source": [
"trainer = Trainer(epochs=10)\r\n",
"estimator = deepar.DeepAREstimator(\r\n",
" freq=\"5min\", prediction_length=12, trainer=trainer)\r\n",
"predictor = estimator.train(training_data=data)\r\n",
"\r\n",
- "prediction = next(predictor.predict(data))\r\n",
- "print(prediction.mean)\r\n",
- "prediction.plot(output_file='graph.png')\r\n"
+ "prediction = next(predictor.predict(data))"
],
- "execution_count": 4,
+ "execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
- "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: gluonts.trainer is deprecated. Use gluonts.mx.trainer instead.\n",
- " This is separate from the ipykernel package so we can avoid doing imports until\n",
- " 0%| | 0/50 [00:00, ?it/s]"
+ "\r 0%| | 0/50 [00:00, ?it/s]"
],
"name": "stderr"
},
@@ -171,31 +270,79 @@
{
"output_type": "stream",
"text": [
- "100%|██████████| 50/50 [00:03<00:00, 14.64it/s, epoch=1/10, avg_epoch_loss=4.43]\n",
- "100%|██████████| 50/50 [00:03<00:00, 16.04it/s, epoch=2/10, avg_epoch_loss=4.11]\n",
- "100%|██████████| 50/50 [00:03<00:00, 15.82it/s, epoch=3/10, avg_epoch_loss=4.05]\n",
- "100%|██████████| 50/50 [00:03<00:00, 16.02it/s, epoch=4/10, avg_epoch_loss=4.01]\n",
- "100%|██████████| 50/50 [00:03<00:00, 15.89it/s, epoch=5/10, avg_epoch_loss=3.99]\n",
- "100%|██████████| 50/50 [00:03<00:00, 15.96it/s, epoch=6/10, avg_epoch_loss=3.97]\n",
- "100%|██████████| 50/50 [00:03<00:00, 16.05it/s, epoch=7/10, avg_epoch_loss=3.96]\n",
- "100%|██████████| 50/50 [00:03<00:00, 15.77it/s, epoch=8/10, avg_epoch_loss=3.94]\n",
- "100%|██████████| 50/50 [00:03<00:00, 16.02it/s, epoch=9/10, avg_epoch_loss=3.97]\n",
- "100%|██████████| 50/50 [00:03<00:00, 16.10it/s, epoch=10/10, avg_epoch_loss=3.94]\n"
+ "100%|██████████| 50/50 [00:03<00:00, 15.25it/s, epoch=1/10, avg_epoch_loss=4.49]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.75it/s, epoch=2/10, avg_epoch_loss=4.09]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.64it/s, epoch=3/10, avg_epoch_loss=4.04]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.88it/s, epoch=4/10, avg_epoch_loss=4.02]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.62it/s, epoch=5/10, avg_epoch_loss=3.98]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.42it/s, epoch=6/10, avg_epoch_loss=3.97]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.48it/s, epoch=7/10, avg_epoch_loss=3.95]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.72it/s, epoch=8/10, avg_epoch_loss=3.96]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.62it/s, epoch=9/10, avg_epoch_loss=3.97]\n",
+ "100%|██████████| 50/50 [00:03<00:00, 15.68it/s, epoch=10/10, avg_epoch_loss=3.93]"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
- "[49.26489 49.644653 43.02694 44.384167 43.330982 43.405052 40.208817\n",
- " 42.52963 43.958622 41.256424 44.719643 41.40297 ]\n"
+ "[48.119385 45.482513 43.079456 40.907524 41.094902 38.321095 38.837597\n",
+ " 38.26018 39.68032 40.427383 42.762894 41.39221 ]\n"
],
"name": "stdout"
},
+ {
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "0ig3yLnhF1l3",
+ "outputId": "b593b65c-c469-4f61-e684-b31ee5a4d660"
+ },
+ "source": [
+ "print(prediction.mean)"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[48.119385 45.482513 43.079456 40.907524 41.094902 38.321095 38.837597\n",
+ " 38.26018 39.68032 40.427383 42.762894 41.39221 ]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 277
+ },
+ "id": "E27gbMFrEh0E",
+ "outputId": "4bdbba3c-31e8-4d35-c0a6-4ff0a17bd7c4"
+ },
+ "source": [
+ "prediction.plot(output_file='graph.png')"
+ ],
+ "execution_count": 10,
+ "outputs": [
{
"output_type": "display_data",
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEECAYAAADAoTRlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2de3Bc133fv79dvB8EQIJ4EAQI8AWSEh8SIYq0HqNIsmTZrvWoo9pJXaV1R+O2ybSTcWI7aTtOJpmxM9O66riNq8aTKokTSbYkS3Fi+SGLkmVJoECKFB8g+AJAEE/iRRJvAnv6x29vdgEsgF3svXvv7v1+Zs4s9u7uPecu7n7POb/f7/yOGGNACCHEXwTcbgAhhJDUQ/EnhBAfQvEnhBAfQvEnhBAfQvEnhBAfQvEnhBAfkpXKysrLy019fX0qqySEkLTn6NGjg8aY9XaeM6XiX19fj5aWllRWSQghaY+IdNp9Tpp9CCHEh1D8CSHEh1D8CSHEh1D8CSHEh1D8CSHEh1D8CSHEh1D8CSHEh1D8M5C5OWBiwu1WEEK8DMU/w5iaAv7+74F/+Afg5k23W0MI8SoU/wzi+nXglVeAvj5gaAj42c8AbtRGCIlFxov/4CDQafvCaO/R3w+8/DJw7Vrk2OXLwDvvuNcmQoh3SWlun1TS2QmcOAH09OjzPXuAgweBQAZ2d+3twBtvALOzi187fRooKdHrJ4QQi4wS/9lZoK0N+Oij+SNgQI8NDAAPPQQUFLjTPif46CPgvfeWN++89x6wZg3AhKqEEIuMGAdPTABHjgB/8zfAL3+5WPgt+vqAH/wA6O1NbfucwBjgV78C3n13Zbu+McDPfw5cvZqathFCvE9aj/yHhtS0c+ECEArF95mJCY2GOXgwfU0hs7Nq5mlvT+wzP/4x8MQTQFGRc20jhKQHaSn+nZ1q7ujuXt3nQyEdMff3A7/2a0BWGn0Lk5PA669r2xNlYgL4x38EHnsMyMmxv22EkPQhbWRvdhY4d05Ff3TUnnNevAgMDwMPPwyUltpzTie5dk3j969fX/05hoc1BPSRRzLT+U0IiQ/Pi//EBHDqFHDmjC5gspuREeCll4D77wcaGuw/v1309emI347voKtLQ0DvvTf5cxFC0hPPiv/QkI7yz5+P356/Wm7eBH7yE2DfPuDOOwERZ+tLlEuX1MY/N2ffOc+c0RDQvXvtOychJH1YUfxFpBHAC1GHNgP4rwD+Kny8HkAHgCeNMSPJNujyZXXirtaenwzHj2tEzIMPAvn5qa8/FidOaKimE1ghoF6e8RBCnGFFq68xps0Ys88Ysw/AfgATAF4B8FUAbxhjtgF4I/x8VczN6Uj0hRfUIemG8Ft0d2s46GocqnZijJpmnBJ+izfe0PUPhBB/kajL7wEAF40xnQAeBfBc+PhzAB5LtPLJSeCDD4C//mvg7bfV/u4FxseBV19VX4MbzM6qGSoV9VshoDduOF8XIcQ7JGrz/xyAvwv/XWmMsZZL9QGojPckw8OR+Hw77dh2EgrpyHtgQB2jqQoHnZxUMU7laNyqkyGghPiHuCVNRHIAfAbA1xa+ZowxIhJznamIPA3gaQCoqanDj34EXLmyyta6wLlz6nx++GG1jzvJ6KiGcroxCh8eBn76U+CTn2QIKCF+IJGf+SMAjhljLGt4v4hUA0D4MeZY1RjzrDGmyRjTFAyuTyvhtxga0nBQJ7OD9vZqOmY3zS9Xrmh6DEJI5pOI+H8eEZMPALwG4Knw308BeNWuRnmR6Wk1jRw5Yn+O/IsXgR/9SOtwm9ZW4MMP3W4FIcRp4hJ/ESkE8HEAL0cd/gaAj4vIeQAPhp9nPMeOaUSSXQvOjh/XFbde8n00N2uHRAhxlxs3gI4OZ84dl83fGDMOYN2CY0PQ6B/f0dWlZqCHHgLWr1/dOaxQztOn7W2bXfziF5oArjJuNz4hxC5GRnQGfuECsG2bM3XQtbdKbtwAfvhDNZMkyuyspmrwqvADOhN5/XWGgBKSSq5e1TDvF17QYBMnsxt4Nr1DOjA3B7z1li4Iu+ceIBhc+TMTE+o7SIfc+pOTkSygublut4aQzKWnR03KqQyIofjbwNmzGhH00ENAcfHS7xsZUTFNp9H0yIiGgH7qUwwBJcRuOjvVvNPXl/q6+XO2iatX1Q/Q1RX79Z4eNROlk/BbdHfrCmxCSPIYo7b8739frQBuCD/Akb+tTE3pyL6pCdi/P3L8/HngzTedz07qJGfP6iK32293uyWEpCehkO4xfvz40lvNphKKv80Yo/mKBgZ0j4DTp3VtQCZw5Ih2AFu3ut0SQtKH2VlNXHnihOYN8woUf4fo7AS+9z1gZsbtltjLm29qCGhVldstUYaH9bvu7ATWrgUOHQKys91uVWqYmFAxKSlhTiYvMj2tyRlPnnRmI6pkofg7SKYJPxAJAX3iCedzHS1Vf3e3iv3ly/N9KH19euzee4G6utS3LVUYE5lRWvdYXp7+P0pKFj96ZW8KvzA5qRtRnT7tbQ2g+JOEsXwbjz+emhDQ8fHI6L67W6fRSzE2pm3btg246y4VxUxieDgSXhzN1JSWWNlgs7MXdwrW30VFqWm3HxgbU3v+2bPL36NegeJPVsXoqC5G+fSn7Q8BNUZF7PJlFfzBwcTPcf68xkzffTewZYu97XOD2Vng6FG1GycaOHDzpn6Hsb7HYHB+ZxD9WFzM8N54GB3VcM1UbDlrJxR/smp6eoDDh9WxnSwzMxome/mylsnJ5M85Oal5k86f10V4hYXJn9MNuro02+r16/afe25O13LE2kgpENCZQSxT0po18S1qzGQGB3VhVnu7/ckeUwHFnyTFuXMqBtGhrfFy7VrEnNPb69yoqaNDz3/wILBzpzN1OMHkJPDuu9p5uUEopB1OrE4nK0v9Kg0NwKZN/nI49/aq6C+1piddoPiTpPngAx0JrpSAKhTSH44l+KmMdZ6eVlv5hQvAffctvxLbC5w9q/s3eyHNdyxmZ4FLl7QEAsDGjdoRNDRknp8F0JF9V5eKvluLsuyG4k9s4fBhNRFUV88/PjkZsd1fueJ+9EN3tybNOnAA2L0bEHG3PQsZHdXV1D09brckfkKhiLnu7bf1Hti8WTuCdDW1AWrW6enRe6a31/17124o/sQW5ubUAfz44+pgtEb3qdyLOF5mZ9WccvGizgLKytxukQrosWPqOPTS3g6JYowKZk+PpiyvqNBOYPNmNQ96mdFRFfrubm2/F2Pz7YTiT2xjagp4/vn0cX7192t+lf37gdtucy+ypbdXTVKjo+7U7yQDA1qam3URnjUjWLdu5c86zY0b88XeS6tvUwHFn9hKugi/RSikPotLl3QWsNrNeVbD9DTw/vur2xMiHRke1tLSorMAy0eQqg2DJidV6K9c0cd0TLJoJxR/QqApuV9+Gdi7VxPzZTn8y7hwAfjVr+wJaU1Hrl3TBVHHj6tfwOoINmywzw8zPR2x2Xd3xw5n9TMUf0LCGKNi1N6us4CFzms7uHFDnaLpHiZoJ+PjmgPn1CmNFKqv146gtjYxU9zNm2pCs8R+aCj9ZqKphOJPyAKuXQNefRXYtcu+RHGhkOZ7aWlJj6X/bjE1pWGuZ8/q2oG6OvUT1NUtno3NzWnYpTW6HxhIrxW2bkPxJ2QJzpyxJ1HcwIA6dIeG7GubH5iZUfPYhQsq/Bs36qxgYkLFvq8vvSOj3IbiT8gyJJMo7uZNjXI5fZrmh2SZndWV2h0dbrckc6D4ExIHiSaKa2/XOHe/hQ+S9IHiT0icxJMobnxcRb+9PfXtIyQRKP6EJEhHhzoZDx2KJIqzNlhpblZzDyFeJy7xF5FSAH8B4FYABsC/AdAG4AUA9QA6ADxpjGEkLfEFMzORRHF792oUjxdTWRCyFPFG0T4D4HVjzA4AewG0AvgqgDeMMdsAvBF+Toiv6O5WhzCFn6QbK4q/iJQAuBfAdwHAGDNjjBkF8CiA58Jvew7AY041khBCiL3EM/JvAHAVwF+KyIci8hciUgig0hjTG35PH4CYGTpE5GkRaRGRlrGxq/a0mhBCSFLEI/5ZAG4H8OfGmNsAjGOBiccYY6C+gEUYY541xjQZY5qKilKYNYsQQsiSxCP+VwBcMcY0h5//ANoZ9ItINQCEH1e0ek5NaVY/LnghhBB3WTHaxxjTJyJdItJojGkD8ACAM+HyFIBvhB9fXelcY2OaOTE3V9O4VlcDVVWa29utXOqEEOJH4o3z/x0A3xORHACXAPxr6KzhRRH5IoBOAE/GW+n0dGTbN0ATZ1VUaEdQVaV/B4OJXAYhhJBEiEv8jTHHATTFeOkBOxpx82YkDSugwr9+fWR2UFGhGf4IIYTYgydX+FqpWvv6gBMndHOHdesiM4OqqsQSbBFCCJmPJ8V/IcYAg4NaTp3SzqC0dH5nECvPCiGEkNikhfgvxBjdkm1kJLL/aXHx/M6gpMTdNhJCiJdJS/GPxY0bWs6f1+cFBZGOoK4OKCpyt32EEOIlMkb8FzIxAVy6pKW5WbMv7ttHXwEhhAAZLP7RzM2pr+D8eWDPHuDWWxlKSgjxN75aWjU9DXzwAfDii8C5c1xpTAjxL74Sf4vxceDtt4FXXtGt+QghxG/4UvwthoeB11/XfOyDg263hhBCUoevxd+ipwd49VXgzTc1YogQQjIdXzh848EY4OJF3Z+VkUGEkEyH4r8ARgYRQvwAzT5LwMggQkgmQ/FfASsy6Ic/ZGQQISRzoPjHydCQRgb9+Mf6NyHEX8zNud0Ce6H4J0h3t84CDh/WnckIIZnN1BTwi1+oCfjCBbdbYx90+K4CY/QmaG8Hdu3SyKDcXLdbRQixm8uXgXfe0VxhgA76WluBj31M9xhJZyj+STA3B5w8qQ7hvXuBW25hZBAhmcDMDPD++/rbXkh/v87+GxuBpqb0DQmn+NvA9DRw5Ahw5gywfz+wdatuOEMIST96ejTIYzmzrjHA2bM6+7/9dl0bFEgzIzrF30bGxoC33tJ1AgcOADU1breIEBIvs7Ma3n3mTPyh3dPTwHvvaUdw6BCwYYOzbbQTir8DDA1pVFB1te4oFgzqqCAYXPx3rGMLX1/qtWQwRs1Wc3NAKLT47+hj1vNY71v4tzE66wkGgaysxdeZyLF0G0mR9GVgQAdu166t7vMjI5ojrKEBuPPO9Ng8iuLvIL29WpxAZOlOIRDQ15cT9HRYtJZoJ7JmDVBZCVRUANnZbreepANzc8CxY8BHH9nzm2hvB7q6NDvAnj16n3oVDzeNLEf0yD1TMUan4rOziX0uEADWro1s41lZCeTnO9NGt5ibA0ZHgcnJ2LOzWDO1hYOAWI/xvpafr5FuO3akr8NzaEhH+8PD9p53dlY7lHPndBbQ0GDv+e1CTAqHgIWFTWbnzpaU1UeIRUlJpCOorNTn6cLMjArU0FCkjIyoCLtNVhawbZvmwEqX7zQUAk6cAD78MDXf4YYN6g8oK1vd5xsbgfvvl6PGmCY728WRP/EF165paWvT5wUFkY6gslJjtr3gY5icnC/yg4OaZtyrZrrZWY17P3sWqK0Fdu9WX5dXGR3V0f7Vq6mrs6dHN47auVMjg7yyJigu8ReRDgA3AMwBmDXGNInIWgAvAKgH0AHgSWPMyHLnMUZ7Wi/8yIi/mZhQ+2x7uz7PyQHWr4/MDioqnLfXXr8eGdEPDuqjtZgo3TBGF0RdvgyUl2sn0NDgnd+6McDp00BLS+JmRDsIhbT+ixd1bUBjo/vh4HGZfcLi32SMGYw69mcAho0x3xCRrwIoM8Z8ZfnzNBmgBcGgOuSskpU1/7lVgkH3vyDiTwIBnQ1E+w1Wa9sOhXTEGT2iHx7WMMFMprBQzUGNjdq5usWNGxq371TwxWooL1dTUGXlyu91yuyTjPi3AbjPGNMrItUADhtjGpc7T25ukykvb8HNm1hUlmrGwg4hVkdhRX4Q4hQii/0Ga9Ysft/sbGz7vBujTa+QkwNs364r4IuLU1v32bNAc7NqjBfZuhW44w7tKJfCbfFvBzACwAD4P8aYZ0Vk1BhTGn5dAIxYzxd89mkATwNATk7d/t27Oxed3zIHRXcGs7OLOwjrWCwCgaU7ifz85b9cQlZDYaF2AmVl6k8YGtIRvlft824jAtTXq0moosLZusbHNSdPV5ez9dhBdrbmB1tq4yi3xb/GGNMtIhUAfgbgdwC8Fi32IjJijFnWn21HtI8V/hdPJxEdBlldrYVmJELcp7JSxa6+3v7f5MWLwLvvpp9Zbc0a4OBBoK5u/nFXo32MMd3hxwEReQXAAQD9IlIdZfYZsLNhSyESGdGvhDWbsBZbTU3pzeYVJxQhfqW/X0txsXYC27cnvzBvagr41a8iTvx04/p14Kc/1aipgwedD51dUQZFpFBEiq2/ATwE4BSA1wA8FX7bUwBedaqRqyUQ0LCqTZs0z87IiIb6zcy43TJCCKDO2PfeA55/XpMjjo+v7jydncBLL6Wv8EfT1QW8/LJ+H05qVTwj/0oAr6hZH1kA/tYY87qIfADgRRH5IoBOAE8618zkEFFHXV6e3hxnzwJbttAPQIhXmJ7WFAunTgGbN6tfIJ58+TMz2nmcP+98G1PJ3Jx+HxcuOLcuYEXxN8ZcArA3xvEhAA840SinKC3V5egXLugMoL5e0wAQQrxBKKS/zwsXdGXs7t3Axo2x/QLd3RrCudrZQjowMaGL6JzAdyt88/O1A7h4UWcBU1N0BBPiRXp6tJSWql9g2zaNhrl5U1Mvt7YysioZfCf+gDqWtm/X1Yh0BBPibUZHNWzz6FHtADo61DlKksOX4g+o0G/apH6A7m61OW7Z4u5KRELI0kxOqh2c2IOvx7qWI3jLFh39nz2b2fZDQgix8LX4W5SWRhIttbVpSCghhGQyFP8wBQXqCC4oAC5dUkcTnUmEzCcU0i0POzp0tkzSF9/a/GNhOYI7O+kIJiQaYzR3UW+vxtaLaAK76mo1nTJaLv2g+C8gEFDBz8+nI5gQY1Tke3v1t1BQoIES+fkaLdfTo2bSTZu4aDLdoPjHINaK4K1b9cYnxA8Yo6Le06Oin5+vg6CSksgof8sWDcO8fFl/I5WVujCLM+X0gOK/DJYj+OJFvbkbGla/Dych6YAxKui9vRpamZen6RZKS2ObdkpLgaIinSX390dmAbH2OiDeguK/ApYj+OJFdQRv2EAbJ8k8jNGFUz09mlIgNzcy2FnpXs/KUsFfu1b9ZefPa16ejRud3wqTrB7+a+Ig2hHc06MjIjqCSSZgjGbW7OnRNS45OZGcV4kOcIqLgV279Fz9/brBTV3d0rMG4i4U/ziJ5QjeujX5HORk9YRC8zfzyc7WmRqFJj4s0R8b0++urk73lk3m+wsEdMRvzQIuXVLxr61l0ITXoPgnwEJHcGsrHcF2Y4yms11ql7boEr1Tm0VengrYunU0OSzF2JiK/o0bKvq1tfqd2TmTtcyl/f1a1/Xr2ikk27m4gTU7mp5WX4ZTKZZTDX8eq8ByBEenhqYjeHkWjtKX26851uK66B3c8vLUyRi9Z3N2ttqqBweBK1d0dlZSomKzZk36CY4TjI9HhDgrS8V4/XrnzJfWYKm0VGcBly9r2KiVU8vrTE7q2obh4fl7h+fm6r1VUqL3Ybqafyn+q6SgANi507+OYGuEPjs7v1ij9nhG6YCm6LXEO5agZ2XpYzC48ndbWKhiNjmpnYC1oXp2ts4EysszZ9SWCBMTGr0zOqrfY02Nfk+xNgt3grw89ZkNDWnHfOaM/l4qK733e5mdVbEfGtLvDVCRX7dOr+PGDfVlXL2qK50DAfV1rFmj70un+4vinwQLHcFTUzqqSbeRQCgUW8gtMV/q+FIsHKUXF0dEfKGwO/Fd5eerKaOmRn+og4NAX5+W4mL9IZeVpd//KVEmJ1X0R0ZU6DdsACoqUif60YhEZmFdXTozGx7WWbPbZlNj9D4ZGtJHY/QesnwX0X69/Hz9DkOhSEdgla4uvd+tjsDrswKKf5JYjuC8vMiCmC1b3HEEGxMxryQi5qHQ0ucUUZG2SkGBPgaD849bJRiMb5SeCgIBFfmyMk1JMDSkHUFHh/5Q167VjiDTnMRTUyr6w8P6HVRV6SjbCz6QnBz9fYyMqBmotdW9xWETExGzzuysfj/r10fuieUIBCKmH2P0d3/tmprUFs4KSkq86SvwwO2Q/ohojpO8PBUWOxzBxiwv2AuPWc+XS0ZnCbMl1Hl5i4V7oZh7eeSSCDk5kTw0Y2PaCQwO6g81P19HpWvXekMgV8v0tIr+0JDek5WVer1evKayMhVGa3HY6KjOmouLna335s2IWWdyUr8ny6wTvXo5EUT0t5SXp9/53JzOCq5fj8wKAH3d6gi8MCvw4G2RvpSVae8e7QguLY2MxlcS7kRG4wtFPJZwLzyWSaPb1SKiAlNcrKahkRHtBLq61B5dWqpCkE5O4pkZNWkNDurzigoVfa+HIVuLw8rKdBZw7px2wjU19nZYodB8sw6gA7PaWmc6/GBQ76PSUh2MTU1FOoKBAe3somcFJSXuhMFS/G1moSN4JZYajS8U7ujngUD6CJOXsab569dHTABDQ9ohZGdHQka9Nl0HVFRmZlRMrl7VY+XlKvrpFk+/Zs38xWGjo7rmIJkIOmPmm3Xm5vR/Wlmp/9P8fPvavxwiWld+/vxZgWUiWjgrsHwFqfh9U/wdwHIE9/frqGO5UTlF3BsUFGipqVHxsdIX9/bqCK28XEdyqZiqW5FUMzNLl+jQw3Xr1KTlxU4qXqIXh3V0RBaH1dUlNoOZmYmYdaam9PflpdlcrFmB1RFEzwosp7GTOZLEpHDHksLCJrNzZ0vK6iMkGWZmIiGjMzP6w127VjuCZPw5odBiIV8o7gvNfiI6os/O1kereNGRmCzGRBaHWZ3CunVLC3coFOmwrY3dCwsjUV1e9HnEInpWcO1apIMvLwcGB+WoMabJzvrS5GshJPXk5GgUSnW1/ijjcRJbjvrlRu2zs4vrysrS+qxQwWiBz8nx1yxx4eKwzk4dzdfVRRaHGaOL1iwznWXWqaqKxOSnG0vNCpz6v8c98heRIIAWAN3GmE+LSAOA5wGsA3AUwBeMMTPLnYMjf5LuLFwEZDmQrdF8rBXKgcBiMY8u2dnuR354FWMiq7aN0c7Y2lVselq/N8usU1ycmR3k3XcDzzzj7sj/PwJoBWBZob4J4FvGmOdF5DsAvgjgz5c7QUkJsGePRlZwk3SSjmRlaTRNRUUkncT165EVyrFMM15Z95COiKhDvqREI4K6u/V4UZGO8svK3Fm0lgnEJf4ishHApwD8KYDfFREBcD+A3wi/5TkAX8cK4p+dDRw4oGV8PBJe19OjoyZC0omCAjVFEOexFodNTGgHnGl+DjeId+T/PwD8PgBrCcY6AKPGGMt6eQVATSIVFxZq1r8dO3TK3N+vHcGVKzqlI4SQaES4T7CdrCj+IvJpAAPGmKMicl+iFYjI0wCeBoC1a2MPkwIBdapVVwN33KG9+5UrOjOwUiYQQgixj3hG/ncB+IyIfBJAHtTm/wyAUhHJCo/+NwLojvVhY8yzAJ4FgE2bmuLyLhcUaJz89u06KxgYmD8rSGF0KiGEZCQrir8x5msAvgYA4ZH/l40xvyki3wfwWWjEz1MAXnWigVZiqqoqoKlJ83FYHUF3t4ZDEUIISYxk4vy/AuB5EfkTAB8C+K49TVqe/Hxg2zYtxmjMtWUiGhzkrIAQQuIhIfE3xhwGcDj89yUAB+xvUvyIRMLubr9dZwHd3ZF84ZOTbraOEEK8S0at8M3L03CwLVvmLw65dInrCgghJJqMEv9orMUh69cDe/dquthjxyJbsxFCiJ/JWPGPJhDQ9QRbtgAnTwIffRQ7vwohhPgFX2UUyc5W38CTTwKNjVxyTwjxL74Sf4uCAuCee4DHH9fdfAghxG/4Uvwt1q4FHn4YeOQRzQpICCF+wdfib1FTAzz2GHDvvcwdQgjxB75w+MaDiKaT2LwZOHVKncLMNEoIyVQo/gvIygL27VOH8LFjQFvb4i31vE5uru4GNTurm4tYJd2ugxDiHBT/JcjPB+66C7jlFuDIEd1IwsusW6d7ndbW6ornWDtDzc1pJ2BtM2j9Hd1BRJflXrNeTyUiel0i84t1rdPT7OCI/QQCul4oNxfo68sciwDFfwVKS4GHHgJ6e4HmZl017AWs/WUtwY/HVxEM2rvrkTHzOwJrf9pY4myF1cYS7+VEPfr5SszM6P+pp0fTe4yO2netxF+Ulqov0NrDOSdHj1t7j1gbUQ0Pu9vOZKD4x0l1NfDoo8DFi0BLCzA2lvo2lJaq0NfWapZTt/d9FYlsVegFcnKATZu0ALpbXHe3dgY9PVzdTZamoECF3hL8pQZT0XuPRO9I2N2tJZ1mBRT/BBABtm4FGhrUKXzihLP/7KwsvckswS8uXvkzJEJhYWRfCEBHaVZn0NvLVd5+JidHB1CW2JeVre486bwjIcV/FQSDmi+osRH48EOgtdU+W/OaNRGxr67m5tR2snatlt271f8xMBAZsTEdeGYTDKrd3hL79evtnzkv3JFwfHz+3iNemxVQ/JMgLw84dAjYtQv44AOgoyPxcwSDOgKxBL+kxPZmkhgEg5EfalOTOot7eyOdwfXrbrfQ24h4u7MU0dG8JfZVVZreJZUUFuoAsbExsiOh5SvwwqyA4m8DJSXAgw9qJEBzs24wsxxFRSr0GzfqjZnqm5IsJjcXqK/XAgA3bsz3F/h1x7hgUO/vtWtVTK3HwkLtMCcnF5epqcXH5uacb2tRUUTsN2zQiD2vEL0joVf2Kaf420hVlTqFL13SmcCNG3o8EAAqKyOj+9XaF0nqKC6O2HKN0ZGa1Rn09aVGzFKJiIrnQpEvKVnaPJKXpyWe+3lmJnbnEKujiNc8kpurMzdL8NNp1uyFfcop/g6webNGnJw7pz+OmhrvRMSQxBEBysu17N2rwt/XFzERDQ972wSykPx8FexokS8rc3YGakWFxSPQc3NLdw5TU5EwzPLyzMjMu3CfcmtWYPkKnILi7xDBILBzp9utIE4QDKr41NTo85s3VZimpyNlair2o1VS4fzLylos8GvXej/HDm8AABKxSURBVMscEotgUGchRUVut8QdFs4KamqAZ56xvx6KPyFJkp2d+Kg5FFrcKSzVUUQ/j2VuCgQ0SmyhyBcXZ8bI2M9Y/1snoPgT4gKBgI7AEx2F37w5v1PIy1MzCEOCSaJQ/AlJI6xZhl9NIsQ+mM+fEEJ8CMWfEEJ8CMWfEEJ8yIriLyJ5InJERE6IyGkR+aPw8QYRaRaRCyLygogwkp0QQtKEeEb+0wDuN8bsBbAPwCdE5CCAbwL4ljFmK4ARAF90rpmEEELsZEXxN4qVvT47XAyA+wH8IHz8OQCPOdJCQgghthOXzV9EgiJyHMAAgJ8BuAhg1BhjZUS/AqDGmSYSQgixm7jE3xgzZ4zZB2AjgAMAdsRbgYg8LSItItIyNrZCuktCCCEpIaFoH2PMKIA3ARwCUCoi1iKxjQBipiAyxjxrjGkyxjQVFa1PqrGEEELsIZ5on/UiUhr+Ox/AxwG0QjuBz4bf9hSAV51qJCGEEHuJJ71DNYDnRCQI7SxeNMb8SETOAHheRP4EwIcAvutgOwkhhNjIiuJvjPkIwG0xjl+C2v8JIYSkGVzhSwghPoTiTwghPoTiTwghPoTiTwghPoTiTwghPiSl4s/9RAkhxBukVPzLy4FHHgF27kx871JCCCH2kfI9fDdt0nLvvUB/P9DeruX69VS3hBBC/ItrG7iLAFVVWg4dAoaHIx3B4KBbrSKEEH/gmvgvZO1aLfv3A2NjQEeHdgS9vUAo5HbrCCEks/CM+EdTVATcequW6Wmgs1M7gq4uYHZ25c8TQoidrFkDFBbqYDRT8KT4R5ObC2zfrmV2FrhyRTuCzk5gasrt1hFCMpnCQrVG7NgBBALAiRNAc3NmWCM8L/7RZGUB9fVajNFeuL1dTUQ3brjcOEJIxpCfD9x2G3DLLUAwGDm+dy+wcSPw858DIyPutc8O0kr8oxEBNmzQctdd6iS2/ARDQ263jhCSjuTmqsDv2aODzVisWwd89rPAe+8Bp06ltn12krbiv5Dyci1NTToLsCKH+vp0luAXysuB3buBmhq97lBocTEGmJuL/B3rPdHvTeT16Wng8mV/feck/cnKUsHfu1c7gJUIBoG779aw9TffBCYmnG+j3WSM+EdTXKz/yD17gMlJ7QRaW4GrGbqFsIiawvbsAaqr3W6NToebm3UmRoiXCQaBXbuA229f3cLT2lrg138deOut9LvfM1L8o8nP13/url1qGmptBc6fB2Zm3G5Z8uTmqiPq1lu1w/MKZWXAJz6hs67m5syKkCCZQSAANDaqM7eoKLlz5efr/X7mDPDuu+kTkZjx4h9NeTlwzz26qOziRe0I+vrcblXilJaqaaexcWm7pBeoqgIefVQjs5qbdSEfIW4iAmzdqubhkhJ7z71rl5pbf/7z9LAyeFg6nCMrS4WzsVFNFK2twLlz3g8dra1V005trdstSYxNm4C6Op1xffABI7OIOzQ0AHfcoYtJnaKkBHj8caClBfjwQ2/7vnwp/tGUlQEf+xhw550R30B3t9utimB1VLt364g/XRHRtRpbt2qExLFj3u9sSWZQW6uiX1GRmvoCAeDAAa33F7/w7mDH9+JvEQyqMG3dCly7Bpw9C7S1uefFLy5WW/6OHfFFH6QLgYDOXnbs0AUzJ06kj42UpBdVVSrCGza4U391tTqDf/lLnfV6DYp/DEpKdCZwxx1qr25t1dQSqZjCVVerONbXZ/b+Bzk5+v3eeitw9Kg6yzJh1SRxn/JyFf26Ordbovf5Aw+o6fPtt70VaELxX4ZAQO2EDQ2abO7sWS1jY/bWY806du/WG9dP5OdrvPSePcCRI8CFC263iKQrZWU6oNi82e2WLGbrVp2JvPGGd6LfKP5xUlSkEQL79+ssoLVVZwXJjFYLCnT5+K5d3NxmzRrgwQeBffs0Mqiry+0WkXShuFhFf9s2b8+Wi4qAz3wGOH5cAx/cnulS/BNERKeTdXXqD2hr044gkc1o1q/XUf7WrTq7IBHKy4FPfUqd7s3NwMCA2y0iXqWwUBdn7dyZPr8jEc0ZtHGjzgJGR11si1nBkC0itQD+CkAlAAPgWWPMMyKyFsALAOoBdAB40hizbKqjpqYm09LSYkOzvUd3t9qt29tj9+iWCWn3bp3+kfi4dEk7gWvX3G6Jt6io0Ci1vDw1I/T16aMfdsTLy4skXfPyOpeVmJ3VRWFnziz/vsZG4P775agxpsnO+uMR/2oA1caYYyJSDOAogMcA/BaAYWPMN0TkqwDKjDFfWe5cmSz+FlNTumbgzBnt1XNz1axzyy3JryT0K6GQ+lqOHgXGx91ujbsUFmowwvbtsV+fmNBOwOoQhoa8HWseD8GgJlOz8ndt2wZkZ7vdKvvo7AQOH9ZUNLFwTfwXfUDkVQDfDpf7jDG94Q7isDGmcbnP+kH8o7l6VZ1Q6Tw68RKzs8DJk2oznZ52uzWpJStL/SH79iV2P928qZ2ANTMYGPB2aG1u7nyhLy/X9S3pYtZZLZOTmiDu8uXFr3lC/EWkHsDbAG4FcNkYUxo+LgBGrOcLPvM0gKcBoK6ubn9nZ2fyrSa+ZnpaV0+ePKnZSTOd7dt1tF9YmPy5QiEdlFidQV+fe4vtCgvni3x5ubdyVLnBqVPA++/P76BdF38RKQLwFoA/Nca8LCKj0WIvIiPGmLLlzuG3kT9xlvFxjZpoa0t/00YsqqrUru/0ytSRkUhn0NvrzIrUkpLFQu/3CLelGBlRZ/DgoD53SvzjmkCKSDaAlwB8zxjzcvhwv4hUR5l9GJdBUkphIXDffZqD/cgRdbZnAsXFwMGDwJYtqamvrEzLzp36fHx8/swgEb9BIKC5c6JFft26zLLRO01ZGfDEE3pPnzjhXD0rin/YpPNdAK3GmP8e9dJrAJ4C8I3w46uOtJCQFSgrAx5+WCOCzp3TmYDdC/FSQXa2RrHs3Tt/68BUU1ioHY/V+czMAP39kc7A8htkZy8ezZeVZb59PhUEAjoAqK0FenqcqSOeaJ+7AfwSwEkAVhDjHwBoBvAigDoAndBQz2WT9tLsQ1JFd7d2ApcuedvBCWjsd2OjpiQoKHC7NSsTCunswO/2+VQi4oLZxxjzDoCl1s09YGdjCLGLmhot99yjezecO+fcCCoZNmxQu346pfUIBCj8mQCDEElGk52tGUR37FBHZlubFrfT7K5Zo5sKNTS42w7iXyj+xDcUF2t+pqYmnQWcO6ezgps3U9eGnBxNSbBnD23jxF0o/sSXbNig5e671S/Q1ubsJj4iGk1zxx0McSTegOJPfE1Wli6i2r5dI4Ta2nRGYGcuoY0b1a7v5PaBhCQKxZ+QMEVFmrJ7/34NaWxrU7PQajfgKClR0d+0yd52EmIHFH9CYlBVpeWuu3Tx2LlzwJUr8S12ys3VDuTWW2nXJ96F4k/IMmRlaRbJbds0tt1aRBYrD3sgoBlcm5o07TAhXobiT0icFBbqCtzbbtNVrmfPqlloelo39zl0SFe4EpIOUPwJWQUVFVruuksTcaXTIi1CAIAWSUKSIBik8JP0hOJPCCE+hOJPCCE+hOJPCCE+hOJPCCE+hOJPCCE+hOJPCCE+hOJPCCE+hOJPCCE+ZMU9fG2tTOQGgLaUVRihBICNSXrTom5ec+bX62bdvObU0miMsXfzTGNMygqAllTWF1Xvs27U62bdvObMr5fX7I96w3Xbrp1+Mfv8vQ/r5jVnfr1u1s1rTnNSbfZpMcY0paxCQgjJAJzQzlSP/J9NcX2EEJIJ2K6dKR35E0II8QZpafMXkU+ISJuIXBCRr4aPNYhIc/jYCyKSs8RnvxZ+T5uIPBx1vENETorIcRFpsbNeEVknIm+KyJiIfHvBa/vD9V4Qkf8pIpLCug+Hz3k8XCpsrPfjInI0fG1HReT+RK7ZoXpXvN4k6z4Qde4TIvL4cudMUb0r3tfJ1B31+brwPfblVFzzCvU6es0iUi8ik1Hf+XeiXovr9+wJ3PJeJ+H1DgK4CGAzgBwAJwDsAvAigM+F3/MdAP8uxmd3hd+fC6AhfJ5g+LUOAOUO1VsI4G4AXwLw7QWvHQFwEIAA+DGAR1JY92EATQ5d820ANoT/vhVAd7zX7GC9y16vDXUXAMgK/10NYAC6YVLMczpdbzz3dbJ1R53jBwC+D+DLy53T6XpTcc0A6gGcWuK8K/6evVJWPfJPpseWpUffK44UABwAcMEYc8kYMwPgeQCPArgfeiMAwHMAHovx2UcBPG+MmTbGtAO4ED5fPKy6XmPMuDHmHQBT0cdFpBrAGmPM+0bvnL9aot221x0nydT7oTGmJ/z0NIB8EcmN85ptrzdF1zxhjJkNP80DYNlUlzqn0/U6fs0AICKPAWiHft8rndPpeuMlqbqXaE9cv2eHZhxxzWqjWZX4i0gQwP8C8Ai0t/y8iOwC8E0A3zLGbAUwAuCLMT67C8DnANwC4BMA/reIBJc550JqAHRFPb8SPjYa9QOwjkFEPiMif7zCZwH9wfxU1FTwtM31LkVN+DOx2uN03RZ/Gb5Z/kuMKapd9f5zAMeMMdOI75qdqDee6026bhG5U0ROAzgJ4Evhzyx33zlZL7DyfZ1U3SJSBOArAP4oznM6Xa/j1xymQUQ+FJG3ROSeqHMue28no51hLhpj9oXLlxa89ptRrw0s8fl/YrV7+P5Trxm+oOhe8zfC73kOwNcB/PmCz/7T6BtAu4hEj75jnfPMKtsIADDGvAbgtTjeercxpjvcY/5MRM4aY95OQb22k0Ddvxm+5mIALwH4AnS0Ylu9InIL9MZ+aLXntbFeW683Vt3GmGYAt4jITgDPiciPkzl/MvUaY6Zg830do+6vQ0VrzGnzdgL1On3NvQDqjDFDIrIfwA/D91s8JKOdtrJas48To+94RgoA0A2gNur5xvCxUhHJWnAs3s/CGGM9DgB4BYvNQcnUuxTd4c8sak8K6o6+5hsA/hY2X7OIbIR+l//KGHMx6pwrXbMT9cZzvUnXHVVXK4AxhP0OS5zT6Xrjua+TrftOAH8mIh0A/hOAPxCR317mnE7X6/g1h83GQ+G/j0J9B9sR373txIzDYqVZ7aILSbgA+CyAv4h6/gUA34b2aNaxWsRwioTf9y+jnn83fL6Y54zx+SwAl6AOW8tRcwvU6RPtqPn3MT57C+Y7fC9BHT+FAIrD7ykE8C6AT9hVb9Q5fmvhNWGxg+iTdl7zUnWHz1ke/jsbauf8ko3fdWn4/U/EeG3Za3ai3niu14a6GxBxtG4C0AOgfKlzpqDeFe9ru+6v8Hu+jojD19FrXqZex68ZwHpEAkU2QwV+bZz3djLamQtgXfjv/dBOZE34eU34sRjAT6EDn+V1fKU3LPFlHwLwk6jnXwuXwaibcN57Fr436vlPwu+Nec4l6v8kgHPQHvcPo/4JR6BO3O8DyA0f/wyAP4767B+GP9eGsCc+/NkT4XLaOqfN9XYAGIaOyq4gHPkAoAnAqfA5v43w2gun64b+MI4C+Ch8zc8gfEPbUS+A/wxgHMDxqFIR7zXbXW+815tk3V8In/s4gGMAHlvunE7Xizjv62Tvr6hzfB3zo24cu+al6k3FNUN9SdHf9z+LOuey9zaS0M4Y7T+MGNFriDHIjPn5ld6wRKVOjL5XHCmwsLCwpHNJUjtjzjgQ56x2YVmVzd+obeq3oaP2VgAvGmNOQ73vvxt24q6DmnTm2a3C73sR6sh9HcB/MMbMLXNOQgjJCJLRTgD3AvhIRI4jIvDD0IH0T0TkI+hspBvA/12pLUzvQAghPiQt0zsQQghJDoo/IYT4kITFX2IvTf5/ItIetbR43zKff0xEjIjsSKbhhBBCVk9C4r9CCobfM5GlxceXOc3nAbwTfkyIcP2EEEKSJNGRfzzJmpYknI/jbmjeis9FHb9PRN4WkX8Izyq+IyKB8GtjIvLfROQENP6VEEJIkiQq/sulYPhTEflIRL4lS2dRfBTA68aYcwCsvBgWBwD8DnRGsQXAE+HjhQCajTF7jWanJIQQkiR2OXy/BmAHgDugiw6+ssT7Pg+dLSD8GG36ORKeUcwB+DvoDAEA5qBJuAghhNhEolk9YyZDMsb0hp9Pi8hfAvgyAIjITwBUAmgB8PvQzHW7RcRAV/UaEfm98GcXLjiwnk+FOwRCCCE2kejI/wMA20Q3HsiB2u1fE93EAOFMco9Bc1vAGPNw2AH8b6EJjf7aGLPJGFNvjKmFbsRgZaY7ED5vAMC/gDqFCSGEOEBC4r/M0uTvichJ6EYS5QD+JMbHPw9NrxrNS4iYfj6AJkJqhXYKC99LCCHEJjyR3kFE7oNm5fu0220hhBA/wBW+hBDiQzwx8ieEEJJaOPInhBAfQvEnhBAfQvEnhBAfQvEnhBAfQvEnhBAfQvEnhBAf8v8BEFhN5CW7rY4AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEECAYAAADAoTRlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3Bc53nf8e8DLG4ESYAELyIpXkWKFEnJskTL8a1W7MiJU0dS04xjJ3Wc1h2N2yaTTOrEdtJO3Uw843TSuu44javGkyoZ2bJsx7ESJ1IcRbJi2bqQkkiKpGiLFGkSvAngDQBxx9s/nnO8B4td7ALY+/4+M+/s/Zx3gbPPe97LeV8LISAiIo2lqdIZEBGR8lPwFxFpQAr+IiINSMFfRKQBKfiLiDQgBX8RkQaUKufOVqxYETZt2lTOXYqI1Lx9+/b1hRBWFnObZQ3+mzZtYu/eveXcpYhIzTOzk8Xeppp9REQakIK/iEgDUvAXEWlACv4iIg1IwV9EpAEp+IuINCAFfxGRBlTW4K+lA0REqkPe4G9m283spUS6ama/aWbLzezbZvbD6HZZvm3198Pzz8PoaHEyLyIi85M3+IcQjoYQbg0h3ArcDlwDvgF8Ang8hLANeDx6nGdbsG8fPPgg7N0LY2MLzL2IiMzLXJt93g0cCyGcBO4BHoiefwC4t9CNjI158H/wQS8MVAiIiJTXXIP/B4AvR/dXhxDORvfPAauzfcDM7jOzvWa2d3Dw9WmvjY56M9CDD8ILL8D4+BxzIyIi81Jw8DezVuBu4KuZrwVfBT5rd24I4f4Qwp4Qwp7Fi7NPSjc6Cs8954XAiy+qEBARKbW5nPm/F3ghhHA+enzezNYARLcXFpqZkRF49tl0ITAxsdAtiohINnMJ/h8k3eQD8Ajw4ej+h4FvFitTyUJg/34VAiIixVZQ8DezTuAu4C8TT38GuMvMfgj8VPS4qIaH4fvf90LgwAEVAiIixVLQYi4hhCGgJ+O5fnz0T8kND8P3vgcvvQRvfCPs3AnNzeXYs4hIfaqp6R2uXYOnn4YvfQlefhkmJyudIxGR2lRTwT82NATf/a4XAocOwdRUpXMkIlJbajL4x4aG4J/+yQuBw4dVCIiIFKqmg39scBCeegq+/GU4ckSFgIhIPnUR/GMDA/Cd73gh8MorKgRERHKpq+AfGxiAJ5+Ehx6Co0c1lbSISKa6DP6xq1fhiSfg0UdVCxARSarr4B87eRL+8R9VAxARiTVE8Ad49VUfGSQiIg0U/MGHgz7zTKVzISJSeQ0V/MGniHjhhUrnQkSkshou+IOvHXDoUKVzISJSOQ0Z/MHb/3/wg0rnQkSkMho2+INfC3DiRKVzISJSfg0d/Kem4Nvfht7eSudERKS8Gjr4g08L/eijcP58/veKiNSLhg/+4AvG/+3fwsWLlc6JiEh5KPhHRkfhb/4GrlypdE5EREpPwT/h2jUvAIaGKp0TEZHSUvDPMDAAf/3Xvm6wiFSX8+d9qpbeXrh0yWvsMj8FLeDeaC5fhm99C+6+G1pbK50bEZmaguef9yv0MydobG6Gjg5YtCh9m+1+ZyekFPF+TH+KHPr6vBP4fe/TATMXly5BdzeYVTonUi+uXIHHH4cLF7K/Pjnpq/kNDubfViqVu3CI78ePm5uL+z2qjcLaLM6dg8ceg/e+F5rUQDarK1fg+9/3i+Y6O2HnTrjpJv8hiczXkSPw9NMwMVGc7U1M+DofV6/mf29b2/QaxZYtcMMNxclHNVDwz+PUKfiHf4C77tLZbDYjI7B3r8+YGi+YMzTkVfR9+2DzZti1C9aurWw+pbaMjvoV+K+9Vtk8jI56MzDAsWNw5gy87W31cTKo4F+A48d9beA776x0TqrH1BQcPOgzpObqdJua8h/MsWOwfLnXBm68Uf0oMrveXl98qRpH3R06BK+/7ieDS5ZUOjcLo+BfoFde8aD11rdWOieVd+wYPPtsYVXn2MWL8N3v+ue2bYPdu71AEIlNTfnxsX9/pXMyuwsX4Gtfg3e/GzZsqHRu5k/Bfw4OHPACYM+eSuekMi5cgO99z/tC5mt83JuIDh+G667zJqEbbqiParTM36VL3qnb11fpnBRmdNQHhNx2G7zpTbXZJKzgP0d793pH0M03Vzon5TMw4Gdkr75a3O2eO+fpe9/zzuGdO2Hx4uLuQ6rfoUM+WKBYnbrl9MILfu3BT/2UdwrXEgX/eXj6aWhpgR07Kp2T0hobgxdf9BrP5GTp9jM87D+iF1+EjRu9NrB+fen2J9VheNg7dU+erHROFqa315uB7rrLa7O1oqDgb2bdwJ8Cu4EA/BvgKPAVYBNwAnh/COFSSXJZhb7zHW8C2rKl0jkpvhC8WWbv3vJe6RyCDxU9cQK6urwmsGOH17Skvpw65Z269XIl/dAQPPIIvPnN8IY3VDo3hSm0pfVzwKMhhB3AG4AjwCeAx0MI24DHo8cNIwQfAnrqVKVzUlw/+hE8/LCvdFbJH2Z83cBf/AU88YSPsJDaNznpHf/f+lb9BP7Y1JQfs4895rXmamch81rpzDeYdQEvAVtC4s1mdhS4M4Rw1szWAE+GELbPtq2NG/eET35ybxGyXT1SKb8KuJaqe9n09/uBe/p0pXOS28qV3iS0dauuuq5FFy/6CVMjTJ3e1QXveQ/09BRne2a2L4RQ1KEmhQT/W4H7gcP4Wf8+4DeA3hBCd/QeAy7FjzM+fx9wH8Dy5Rtu//Sna7yBL4vWVp8HaMWKSudk7q5d8wXtjx6dOWdKtWprg+3bvSDo6qp0bqQQBw/CM8+Utu+o2jQ3wzveUZy+wUoF/z3AM8DbQgjPmtnngKvAryeDvZldCiEsm21b9XjmH+vogHvu8XltasHEhI+nfvHF2hxlEVu/3guBjRtrc7hdvbt2zZvt6q15dC527IC3v31htdVSBP9CsnMaOB1CeDZ6/DW8ff+8ma1JNPvkmHapMQwP+1oA995b/cMVjx71s/1qvIJyrk6d8rR4sRcEy5Z56u6u/Sswa93Jkz6ap97a9ufqlVe8z+o976mummre4B9COGdmp8xsewjhKPBuvAnoMPBh4DPR7TdLmtMaMDjoawHce291jvk9c8bH1NfKhTRzMTjok4AlpVLpwiAuEJYvh6VLVUsopYkJP84OH650TqpHfz98/evwkz/p811Vg0IrIr8OPGhmrcBx4F/jI4UeNrOPACeB95cmi7XlyhWvAdx9d/UMUUzOuNlIJib8jCtzpFBTkxcEyQKhu9tTvU/jW2p9fX6l7qWGGfRduLExHwl0yy3wEz9R+avaCwr+IYSXgGztTe+ey84apbOnv98v/f65n6vsqJRsM26K/y0uXpw56sTMawXJmkJ8v6WlMnmtJfv3+5XgOtZmd+CAT5Vy110+/Xml5O3wLabOzj3hF39xL7fe2hgzO65e7cksd2pqyv865H5frtdff332GTdlbhYvnlkgLFsG7e2VzlnlDQ35BVu9vZXOSW3p6PBpIdaty//eioz2KabOzj3hppv2smiRT4a0bVvZdi1SEh0dPsR3yxZP1dLUVy6vveadujrJmB8znyjy9tvzva9Ogn9s9WqfIrlYF0KIVFJTk4842rYNNm2q7wvRJib8St1XXql0TurDhg0+RXSuk4e6C/7gJd/27V76qQot9SKV8gJg2zYvECrduVcMU1Nw9qwPrT12zGd7leJZvNiHg65aNfO1ugz+sbY2r/rs2FEfPxSRWFubNwlt3erLWdbSMNPBQZ/v6Uc/8jb98fFK56i+NTV5a8ju3dOfr+vgH+vpgbe8pfbnyhHJprPTF6/ZujX7GV6lTU762f2PfuRn+BqyWRlbt8I735keZdYQwT92ww1wxx2VHQolUkpdXf4j37rVRw5VytWr6WDf21vb033Uk2XLvBlo2bIGC/7g7aa33uqrZuniG6lnPT3eP7B1a+mnB5mY8Ku944B/5Upp9yfzl0r5cNDNmyszt0/FTEz4RUo/+IE3BWl1J6lX/f2ennnGmzy3bvXab7GmCbl8OR3sz5xpnAsua93EhA+nLYWqDv6xq1f9suj16/2y6GqaHEmk2JJrG69b5wXBli1zu8p4YsLXZjh1yoO+RuZIppoI/rH4rGX3bm8O0iX3Us+mptKzlj71lE9bvXWr32ZrBr14MR3sz57VNAsyu5oK/uDV1f374dVXvUP4hhsqnSOR0puchOPHPbW2+syQW7f6GX7cnDM4WOlcSi2pueAfGxryRSKOHPH+AF0lLI1ibMzXZDh6tNI5kVpW85dTnTsHf/VX3j46MlLp3IiI1IaaD/7ga88ePgxf+5rXBGplLVoRkUqpi+AfGxmBp5/2msC5c5XOjYhI9aqr4B/r7/fVtJ580heQFhGR6Wq2w7cQr77qi0jfdJOPjli5stI5EhGpDnUd/MFnITxwwNOSJT7N7ubN1TmplohIudR98E8aGICDBz0tXuwFwaZN6aUWRUQaRUMF/6TBQXj5ZU+LFqVrBNddp4JAROpfwwb/pGvXfKjo4cM+kdbGjV4QrFmjhWVEpD4p+GcYHvZ1SV95xZeVjAuCtWtVEIhI/VDwn8XISPoy+rY2X2R50ya4/nqtLyAitU3Bv0Cjo/DDH3pqbfXppTdv9lsVBCJSaxT852FsDI4d89TS4gXApk1+q2mmRaQWKPgv0Ph4eqrdVMqbhOIaQWtrpXMnIpKdgn8RTUzAiROempu9INixw281fFREqomCf4lMTvrUEidPwtKlsGuXL9Ct2oCIVIOCgr+ZnQAGgElgIoSwx8yWA18BNgEngPeHEC6VJpu17epV+P73Yd8+X31p507o7q50rkSkkc3lzP8nQwh9icefAB4PIXzGzD4RPf54UXNXZ8bG/EKyI0d8Ye5du9QkJFLNLl6E06d9mczLl33Id3t7Os32uNpr+Qtp9rkHuDO6/wDwJAr+BQnBD6jTp71JaOdOuPHG6j9YROrd+Dj09qYD/tDQ9NeHhwvfVnPzzMJhtoKjvb28w8YLDf4B+HszC8D/CSHcD6wOIZyNXj8HrM72QTO7D7gPoLV1wwKzW3+uXoVnnvEmoW3b1CQkUm6XLqWD/fnz3l9XDJOTPnXMXNYUaWmZWUCMjxcnP5kKDf5vDyH0mtkq4Ntm9kryxRBCiAqGGaKC4n6Azs49WmAxh/HxdJPQ2rXeJLR+vZqERIptfBzOnEkH/MHBSucobXzc08BA+rnrrivNvgoK/iGE3uj2gpl9A7gDOG9ma0IIZ81sDXChNFlsLCF4tbO3V01CIsVy+XI62J87V7yz+1qWN/ibWSfQFEIYiO6/B/h94BHgw8BnottvljKjjShuEtq7N90ktGxZpXMlUv3Gx+Hs2XTAT55JiyvkzH818A3z9ocU8KUQwqNm9jzwsJl9BDgJvL902WxsExPeHJRsEtqwQU1CIklXrnig19l9YfIG/xDCceANWZ7vB95dikxJbmfOeFqyJN0k1NZW6VyJlN/EhJ/dnzrlZ/hXr1Y6R7WlrFf4Tkx4Sum64gUbGIBnn01fOLZrV2mahCYnfWrrOI2Ozn5/asqntNi9W/0UUnxXrqSHSZ896/FE5qesYXhsDPbv92UTly711NmpRVIWYmIivfjM2rVeG9i4MXuTUDKQ5wrimY/n8+N64QU4dMgLgF27VAjI/A0NpWu7Z87MHHcv81fW4N/WBsuXe/Xs3DlPTU3ehBEXBm1tasuer2ST0KpVMwN8qcYLZzM66rWSl19WISCFGxnxY/jsWR/xpqac0ilr8G9u9rPTtWv9jHJgwP+5V696dQ48QMQFwZIlaiKaj4GB6hndkCwEbr7ZayYqBCQ2NuYngXHAv3jRhztL6VUstKZS3kYdt1OPjqYLgosXoS+aRaizc3oTkWoFtWl01IesHjyoQmCuQpjZNBen+GRpyRJP1d6EOjnpV9HGtdS+Pu8nkvKrmvPqtjZYudJTCN62FxcGZ896ymwiam+vdK5lruJCINkc1Girn42P+99heDj7bWaAHx0t7GzYDBYvThcGyRr00qWV+TtPTcHrr/vv98yZ4k6fIAtTNcE/KT6IFy9WE1G9Ghmpn0JgdNTnb8l2Zp4tuJdqhEoIszf5dXTMLBjixx0dxcvDxYvpM/vz571pR6pPTYTLZBNRXAVWE1F9SBYCcXNQtRcCk5PeTn36tHdKXrxY6RwVZnjY0/nzM19rbU0XCpmFQ77f0pUr6WB/9qz/T6X61UTwTzJLz3i3apUXBoODM5uImpunH8waRVTdRkbg+een9wlUUyFw6VJ6qt9z5+pvfPnYGPT3e8oU/5aSv6eWlnRHrYZf1qaaC/6ZzNIH5rp1M5uILl/29zU3+xlMZ6dfZ9DZWV3BRVxcCMTNQZUqBOIhh3HAb+QANznpv6P4tyT1oeaDf6ZsTUQDA/7jvXbNawWx1tZ0QRAXCuVcTEFyGx5OFwI33ww33VTaQmBqCi5cSAf7vj4NOZT6VnfBPynZRLRypT83OemBZWgonZJnNO3t02sHHR3VP3yung0Pw3PPeXPQLbf41BHFKgSuXk1Pn33mjDompbHUdfDPprk5PZIoNjGRLgiuXfMOrLjt08wLgGTtoL1d/QflNjzscxkdODD/QmBsLH3lqCYCk0bXcME/m1QKuro8gVf3x8a8IIgLhf5+H68MXhNI1g7i/gMVCKWXWQjcdFPuIb4hePNNHOwvXNAFRSIxBf8szHx0UFtb+grkELwTMK4dDA15MInbhVOpmR3Kuu6gdHIVAkND6WB/5oyGHYrkovBUoLj5J3kxzNTUzP6D+AI08MKjuxtWrNDVyKUSFwIHD/rf+9KlSudIpDYo+C9A3PzT2Zl+bnIyXTsYGPALas6f9z6GFSu8JqEO5OK7ds2TiBRGwb/ImpvTV0Zed53P49LX5+nECV91aPlyH31UrEvqRUTmSsG/xFpaYM0aLwgGBtIFweuve9/AypVeG9D1BSJSTgr+ZWKWrhFMTPjoob4+OHkyXRtYscILBI0aEpFSU/CvgFQKVq/2uYmGhrwQiCeo6+jwQmD5co0WEpHSUXipoOTU1evXpwuAU6d8qOKyZV4QLF6s2oCIFJeCf5Vobk4vZnPtmhcC/f1eILS1eSHQ06PJ6ESkOBT8q9CiRbBhg89Sevmydw7H8890dXkBsWSJagMiMn8K/lWsudnP9nt6/GKmuDZw+bLPSBrXBrQWrjSKEPxamhA8TU1Nvy3lc+DX6DQ3e0rez3yc6341nbAp+NeIjg7vF4hrA3196dWTurq8IOjqqq6DS2Q+Qkivc5y5LGaxZl41S6empum38f04xc+BFwSTk56/ycl0KnT6b7P8BUTm45Mni/OdMyn415imJh8JtHy5/zji2sCxY94f0NPjBUFbW6VzKjK7ycnpAT55PzkBX1OTH8+dnX58x8ExX/DO9VwymBdLXCOJC4c4JR/nup+vIDl+vLh5jSn417C2Nq8JrF3rcwr19fnSeufOeU2hpcVTKpVOycctLZpqQkorniE3M7iPjHjQS2pt9TmwenrS63C0t9fGjLlmxRuanVmQ7N4NDz9cnG0nKfjXATOfQK67O70W6+CgX0wW/8hyVUubmnIXDNnuq7CQbCYnZzbRxME+eew1NXlAX7IkHdzb2vxWx5bLLEjWrCnNfgoO/mbWDOwFekMI7zOzzcBDQA+wD/hQCEFrIVVYa+vMgyXutJqY8DQ+nv1+vIbBxMTshUW+2kRc65D6MjXlAT1OyUCfuaB9HNCXLk3fb2/3Y6Taz+IbxVzO/H8DOAIsjR7/IfDZEMJDZvYF4CPAnxQ5f1IEyU6mQvoC4sIiWTBkKzTiwiKz+g4e/Bctmp5qofre6OJ2+Di4J4N95v85lfLjqatrejNNa6vO4mtBQcHfzK4H/jnwaeC3zMyAdwG/FL3lAeBTKPjXhWRhUYi4jTIuFOLpleMlMWOpVHqhGxUIlRH/rzIDe5wyz+DjAB8308SLHLW1afqRWlfov+9/Ar8DLIke9wCXQwjxoXIaWJftg2Z2H3AfQGvrhvnnVKpW3EaZSqXbc2OTk36NQlwYDA1NXzs3LhCSqbW1+gqEePjh2Fj6Nk7j4+mheYWO/Y4fxyNQSpHXbME9cyQN+N87XngoGdzb2jTbbD3LG/zN7H3AhRDCPjO7c647CCHcD9wPsGTJngJHw0q9aG5Oz18Um5qaXju4ds1HKCU/k1lDKHWBMDk5PaBnpmyd5k1Nnq+WlnSfSnLIXqHmMuY7836uZprMvMbBvKdnZoBXE01jKuTM/23A3Wb2s0A73ub/OaDbzFLR2f/1QG++DS1bBm97my+5lzz7k8bS1JS9QMisIZw/nw5icYGQTG1thRUIybP2XClbsG5t9bR4cfp+Ms12VhxfHZpvjHeux/HY7/i1fJLrTi9dOr2JphprUlJ5eYN/COGTwCcBojP/j4UQftnMvgr8Aj7i58PAN/Nty8wX2t6xw69aO3jQf+Ai2ZbEzCwQrl2DCxemX2ofFwSdnf4411l7pubm2YP7QvsikhcWLXTkU9wBn60AiTvx1Xcic7WQLpuPAw+Z2R8ALwJfLPSDZrBpk6fz570QOHmy8EukpTHkKhBGRqbXEF5/3QuFmJkHw9ZW73+Y61l7tUl2wGsIrRTLnIJ/COFJ4Mno/nHgjoVmYPVqT1euwMsvww9/OHPEgUgsebYfC8FrCCF4YNdYcpH8qmawVleX9wfcfjscPuxpZKTSuZJaYDa9MBCR/Kom+Mfa2+G22+CWW7wWoM5hEZHiq7rgH0ul1DksIlIqVRv8Y+ocFhEpvqoP/knqHBYRKY6aCv6xuHP4ttvgyBF1DouIzFVNBv9YR4c6h0VE5qOmg39MncMiInNTF8E/luwcPnfO+wXUOSwiMlNdBf+k667zdOUKvPZaeq7yeEGS5G3yfrYFlEVE6k3dBv9YVxfcemvh7w9h+mpV2QqLXIVH5uOxMV9LV0Sk2tR98J+reFKweC3ahRoaglOnoLfX05hWORaRKqDgX2Kdnd4RvWOHz0h5/jycPu2pv7/SuRORRqXgX0ZNTbBmjac3vcmnJD592msGZ854v4SISDko+FfQokVw442epqZ8TvpTp7xAuHhRHc8iUjoK/lWiqSk9QilZKzh92vsKVCsQkWJS8K9SmbWC119PNxH196tWIFJMbW0+wGPRoum3yfvNzTAw4GlwcPr94eFKf4O5U/CvAU1N6Untbr/dD7RkrUDzGonM1Nw8M4Dnui10Wc+uruzPj497IZAsFJKFQzXW3BX8a1BHB2zb5ikErxXEfQV9faoVSP0yy32Wnnnb1la+fLW0wLJlnrIZG8tea4gfj4+XL68xBf8aZwarVnm6/XavBZw+7Z3HyQNscrLSORWZv9ZW2L4ddu2CxYsrnZu5a22Fnh5P2YyMzCwQ4tuWltLkScG/zrS3w9atnmIheAdyrjOPoSHVFqQ6LVniAf/GGz2A1qv2dk8rV858bft2+KM/Kv4+FfwbgJlfbNbZ6aOJMk1NZW+rrOXOLKltq1bB7t0+SWNTU6VzU58U/IWmJli61FM2cWdWtmrpwICmrJDiiGfl3b3bBzdIaSn4S175OrMy2ysHBnxRnStXvLlJTUoym9ZWb9bZtcubeaQ8FPxlwWZrr5ycTBcEAwN+e/WqJ/U1NLbOTj/L3769vtvzq5WCv5RUc3PuWsPk5MwCIU6DgyoY6tXKlR70N29We34lKfhLxTQ3Q3e3p0xxwZCtcBgYUMFQa8xg40YP+tkGHUj5KfhLVUoWDOvXT39tairdr5BMly5p8Zxqk0p5e/7u3bkHFEhl5A3+ZtYOPAW0Re//Wgjhv5jZZuAhoAfYB3wohKBxH1JyTU1+mX22S+2Hh33uo76+dFKBUH6dnbBzp69jUc4rbaVwhZz5jwLvCiEMmlkL8F0z+zvgt4DPhhAeMrMvAB8B/qSEeRXJq6MDrr/eU2xkJF0Q9Pf7dBgqEEpjxQo/y9+yRe351S5v8A8hBCD+qbREKQDvAn4pev4B4FMo+EsVam/PXyD09XlTksydmTfN3XyzL1QktaGgNn8za8abdrYCfwwcAy6HECait5wG1pUkhyIlkKtAyGwyUoGQWyrlkwvu3p17tkupXgUF/xDCJHCrmXUD3wB2FLoDM7sPuA9g+fIN88mjSFm0t8O6dZ5iKhDSzHxStWXL/Arc7dv9bya1aU6jfUIIl83sCeAtQLeZpaKz/+uB3hyfuR+4H2Djxj0aoCc1JVuBMDo6vcmov9/7EOpl5lQzv9K2u9sDffI2pfGBdaOQ0T4rgfEo8HcAdwF/CDwB/AI+4ufDwDdLmVGRatHWNrNASM6cOjQ0c1reaiwcsgX55cu9CUdBvv4V8i9eAzwQtfs3AQ+HEP7GzA4DD5nZHwAvAl8sYT5Fqlpy5tRsQvBhqMnCIPN+qQoHBXnJppDRPgeAN2Z5/jhwRykyJVJvzHyFqUWLcs9YmSwcshUSExPZP5fcRzLIx0lBXrLRISFSJeL1Zletyv768PDMgiE542p3d+Fr0Yoo+IvUiLhwyDZ7qshc6Ro8EZEGpOAvItKAFPxFRBqQgr+ISANS8BcRaUAK/iIiDUjBX0SkASn4i4g0IAV/EZEGpOAvItKA6mJ6h6Ymv+y9szM9eVZ8v7PT5zu5etXT5ctw5YrfzzdRlohIvarq4J+cCTEZzJPPdXb6ghtms29rXZZFJoeGvCDITCoYRKTeVST4J4N6tsAe33Z05A/qCxEXHmvXznxNBYOI1LOyBv9ly+BXfqX0Qb0Y8hUMyeajZOFQbas1iUht6u72+LNtW2m2X9bgn0r5GX2tiwuGbE1Jg4PTawnXrvk87CMj6VvVHEQkUxzs41TqWFnVbf61aPFiT9kKhtjERLogSBYKuZ4bHS1f/kWkPMod7DMp+FdAKuXL7S1ZUtj7Q5i9cMj23NRUab+DiMxNpYN9JgX/GmCWXsWpUCMj3uw0MJAe5hqnwUEvUESkdKot2GdS8K9T7e2esq0HOzXlBUBmoRCnsbHy51ek1lV7sM+k4N+Amppg6VJP2YyO5i4YhobUpJQUX1zY11fpnEi51Vqwz6TgLzO0tfki4dkWCs+sNWQ2K9Vz53RLi/9NVq1KpytItDEAAAu4SURBVMWL/bUzZ+C55+DcucrmUUqn1oN9JgV/mZNCag2XLk1PFy96jaGWNDXB8uXTA/2yZbmvT1m7Fu69F06dguefhwsXyptfKZ72dujp8f9/MrW0VDpnxaXgL0XV1gbXXecpaWxsemFQbYVCV9f0s/qVK31OqLlav97TyZNeCKg5qHqlUjMDfE/P3AZW1DIFfymL1lZYvdpTUrZC4dIlb1oqlY6O6Wf0q1Z5oVVMGzd6On7cC4FLl4q7fSmcmRfumWfzS5dW/0wDpaTgLxWVq1AYH59ZIFy65H0Mc5FKzWynL/T6imLYsgU2b4ZXX4W9e/3Kbymdzs70GXwc5Jctm18trt4p+EtVamlJB+ukuFDIrC0MDMy9nb5czHx+lq1b4ehR2Ldv7oWYTNfaOjPIL19e/BpcPVPwl5qSq1CI50tKVfERbQY7dsCNN8Irr3ghUC19HuXS1OT/w1TKb5Mpfi7ztczHS5emR1nJ/OX9qZjZeuDPgdVAAO4PIXzOzJYDXwE2ASeA94cQ1LIpFVHNQT9TUxPs3Anbt8Phw/Diiz4BYK2Ia1e5gvdsAbxJawdWjUJ+MhPAfwwhvGBmS4B9ZvZt4FeBx0MInzGzTwCfAD5euqyK1JfmZrj5ZrjpJjh0yAuBkZFK52qmZct8osJ4fHt7e6VzJMWQN/iHEM4CZ6P7A2Z2BFgH3APcGb3tAeBJFPxF5iyVgje8wWsDBw/C/v2VvVguvpgpDviNMvSx0cypsmxmm4A3As8Cq6OCAeAc3iwkIvPU0gK33Qa7d3sBcOCAd3CXWlfX9GBf61euSmEKDv5mthj4OvCbIYSrlhhCEUIIZpZ1nkgzuw+4D2DDhg0Ly61IA2hthTe9yZuE9u/32kAxFwBasiQd6Net8+GR0ngKCv5m1oIH/gdDCH8ZPX3ezNaEEM6a2Rog6wXtIYT7gfsB9uzZo4mERQrU3g5vfjPccov3Bxw6NL9lQuPFheI2+3Je5yDVq5DRPgZ8ETgSQvgfiZceAT4MfCa6/WZJcijS4Do64K1v9X6BF16AI0dmn1k1XmI0Dva55mGSxlbImf/bgA8BB83spei538WD/sNm9hHgJPD+0mRRRMCD+jveAbfe6oXA0aNeCCxalA7069Z5G75IPoWM9vkukOsayXcXNzsiks+SJfDOd8Ib3+jBv7u70jmSWlRDl8aISJKac2QhdL2diEgDUvAXEWlACv4iIg1IwV9EpAEp+IuINCAFfxGRBqTgLyLSgBT8RUQakIVQvrnWzGwAOFq2HaZ1AZVaOrtS+9Z3rv/9VnLf+s7ltT2EUNwp+UIIZUvA3nLuL7Hf+yux30ruW9+5/ver79wY+432XfTY2SjNPn/dgPvWd67//VZy3/rONa7czT57Qwh7yrZDEZE6UIrYWe4z//vLvD8RkXpQ9NhZ1jN/ERGpDjXZ5m9mP2NmR83sVTP7RPTcZjN7NnruK2bWmuOzn4zec9TMfjrx/AkzO2hmL5nZ3mLu18x6zOwJMxs0s89nvHZ7tN9Xzex/WXJx5NLv+8lomy9FaVUR93uXme2Lvts+M3vXXL5zifab9/sucN93JLa938z+xWzbLNN+8x7XC9l34vMbomPsY+X4znn2W9LvbGabzGw48Tf/QuK1gn7PVaFSvdcL6PVuBo4BW4BWYD+wE3gY+ED0ni8A/y7LZ3dG728DNkfbaY5eOwGsKNF+O4G3Ax8FPp/x2nPAT+AL5vwd8N4y7vtJYE+JvvMbgbXR/d1Ab6HfuYT7nfX7FmHfi4BUdD9e1zqVa5ul3m8hx/VC953YxteArwIfm22bpd5vOb4zsAl4Ocd28/6eqyXN+8x/ISW25T77znumANwBvBpCOB5CGAMeAu4B3oUfCAAPAPdm+ew9wEMhhNEQwmvAq9H2CjHv/YYQhoKviDaSfN584fulIYRngh85f54j30Xfd4EWst8XQwhnooeHgA4zayvwOxd9v2X6ztdCCBPRw3YgblPNtc1S77fk3xnAzO4FXsP/3vm2Wer9FmpB+86Rn4J+zyWqcRRUq02aV/A3s2bgj4H34qXlB81sJ/CHwGdDCFuBS8BHsnx2J/ABYBfwM8D/NrPmWbaZaR1wKvH4dPTc5cQPIH4OM7vbzH4/z2fBfzB/b95UcF+R95vLuugz2fJT6n3H/iw6WP5zlipqsfb7L4EXQgijFPadS7HfQr7vgvdtZm82s0PAQeCj0WdmO+5KuV/If1wvaN9mthj4OPBfC9xmqfdb8u8c2WxmL5rZd8zsHYltznpsLyR2Ro6FEG6N0kczXvvlxGsXcnz+x+a7jOOPS83oCyVLzV+K3vMA8CngTzI+++Ozb+A1M0uefWfb5uF55hGAEMIjwCMFvPXtIYTeqMT8tpm9EkJ4qgz7Lbo57PuXo++8BPg68CH8bKVo+zWzXfiB/Z75breI+y3q98227xDCs8AuM7sJeMDM/m4h21/IfkMIIxT5uM6y70/hQWuw1M3bc9hvqb/zWWBDCKHfzG4H/io63gqxkNhZVPNt9inF2XchZwoAvcD6xOPro+e6zSyV8VyhnyWEEN9eAL7BzOaghew3l97oMzPyU4Z9J7/zAPAlivydzex6/G/5KyGEY4lt5vvOpdhvId93wftO7OsIMEjU75Bjm6XebyHH9UL3/Wbgv5nZCeA3gd81s1+bZZul3m/Jv3PUbNwf3d+H9x3cSGHHdilqHLF8tdoZX2TOCfgF4E8Tjz8EfB4v0eLn1pOlUyR6379KPP5itL2s28zy+RRwHO+wjTtqduGdPsmOmn+f5bO7mN7hexzv+OkElkTv6QS+B/xMsfab2MavZn4nZnYQ/Wwxv3OufUfbXBHdb8HbOT9axL91d/T+n8/y2qzfuRT7LeT7FmHfm0l3tG4EzgArcm2zDPvNe1wX6/iK3vMp0h2+Jf3Os+y35N8ZWEl6oMgWPMAvL/DYXkjsbAN6ovu344XI0ujxuuh2CfD3+InP7HE83xty/LHfAjyWePzJKPUlDsJp78l8b+LxY9F7s24zx/5/FvgBXuL+XuKf8BzeiftVoC16/m7g9xOf/b3oc0eJeuKjz+6P0qF4m0Xe7wngIn5Wdppo5AOwB3g52ubnia69KPW+8R/GPuBA9J0/R3RAF2O/wH8ChoCXEmlVod+52Pst9PsucN8firb9EvACcO9s2yz1finwuF7o8ZXYxqeYPuqmZN85137L8Z3xvqTk3/vnEtuc9dhmAbEzS/6fJMvoNbKcZGb9fL435NhpKc6+854pKCkpKdVyWmDszFrjoMBabWaaV5t/8LapX8PP2o8AD4cQDuG9778VdeL24E0609qtovc9jHfkPgr8hxDC5CzbFBGpCwuJncA/Aw6Y2UukA/xF/ET6MTM7gNdGeoH/my8vmt5BRKQB1eT0DiIisjAK/iIiDWjOwd+yX5r8/8zstcSlxbfO8vl7zSyY2Y6FZFxEROZvTsE/zxQMvx3Slxa/NMtmPgh8N7qdk2j/IiKyQHM98y9ksqacovk43o7PW/GBxPN3mtlTZvatqFbxBTNril4bNLP/bmb78fGvIiKyQHMN/rNNwfBpMztgZp+13LMo3gM8GkL4ARDPixG7A/h1vEZxA/Dz0fOdwLMhhDcEn51SREQWqFgdvp8EdgBvwi86+HiO930Qry0Q3Sabfp6LahSTwJfxGgLAJD4Jl4iIFMlcZ/XMOhlSCOFs9HjUzP4M+BiAmT0GrAb2Ar+Dz1x3s5kF/KreYGa/HX0284KD+PFIVCCIiEiRzPXM/3lgm/nCA614u/0j5osYEM0kdy8+twUhhJ+OOoD/LT6h0V+EEDaGEDaFENbjCzHEM9PdEW23CfhFvFNYRERKYE7Bf5ZLkx80s4P4QhIrgD/I8vEP4tOrJn2ddNPP8/hESEfwQiHzvSIiUiRVMb2Dmd2Jz8r3vkrnRUSkEegKXxGRBlQVZ/4iIlJeOvMXEWlACv4iIg1IwV9EpAEp+IuINCAFfxGRBqTgLyLSgP4/Lukk6cMV0LwAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
@@ -210,7 +357,7 @@
{
"cell_type": "code",
"metadata": {
- "id": "E27gbMFrEh0E"
+ "id": "OBEvWiyjFRgK"
},
"source": [
""