Files
graphiti/core/nodes.py
Daniel Chalef 50da9d0f31 format and linting (#18)
* Makefile and format

* fix podcast stuff

* refactor: update import statement for transcript_parser in podcast_runner.py

* format and linting

* chore: Update import statements and remove unused code in maintenance module
2024-08-22 12:26:13 -07:00

107 lines
3.3 KiB
Python

import logging
from abc import ABC, abstractmethod
from datetime import datetime
from time import time
from uuid import uuid4
from neo4j import AsyncDriver
from openai import OpenAI
from pydantic import BaseModel, Field
from core.llm_client.config import EMBEDDING_DIM
logger = logging.getLogger(__name__)
class Node(BaseModel, ABC):
uuid: str = Field(default_factory=lambda: uuid4().hex)
name: str
labels: list[str] = Field(default_factory=list)
created_at: datetime
@abstractmethod
async def save(self, driver: AsyncDriver): ...
def __hash__(self):
return hash(self.uuid)
def __eq__(self, other):
if isinstance(other, Node):
return self.uuid == other.uuid
return False
class EpisodicNode(Node):
source: str = Field(description="source type")
source_description: str = Field(description="description of the data source")
content: str = Field(description="raw episode data")
valid_at: datetime = Field(
description="datetime of when the original document was created",
)
entity_edges: list[str] = Field(
description="list of entity edges referenced in this episode",
default_factory=list,
)
async def save(self, driver: AsyncDriver):
result = await driver.execute_query(
"""
MERGE (n:Episodic {uuid: $uuid})
SET n = {uuid: $uuid, name: $name, source_description: $source_description, source: $source, content: $content,
entity_edges: $entity_edges, created_at: $created_at, valid_at: $valid_at}
RETURN n.uuid AS uuid""",
uuid=self.uuid,
name=self.name,
source_description=self.source_description,
content=self.content,
entity_edges=self.entity_edges,
created_at=self.created_at,
valid_at=self.valid_at,
source=self.source,
_database="neo4j",
)
logger.info(f"Saved Node to neo4j: {self.uuid}")
return result
class EntityNode(Node):
name_embedding: list[float] | None = Field(
default=None, description="embedding of the name"
)
summary: str = Field(
description="regional summary of surrounding edges", default_factory=str
)
async def update_summary(self, driver: AsyncDriver): ...
async def refresh_summary(self, driver: AsyncDriver, llm_client: OpenAI): ...
async def generate_name_embedding(self, embedder, model="text-embedding-3-small"):
start = time()
text = self.name.replace("\n", " ")
embedding = (await embedder.create(input=[text], model=model)).data[0].embedding
self.name_embedding = embedding[:EMBEDDING_DIM]
end = time()
logger.info(f"embedded {text} in {end-start} ms")
return embedding
async def save(self, driver: AsyncDriver):
result = await driver.execute_query(
"""
MERGE (n:Entity {uuid: $uuid})
SET n = {uuid: $uuid, name: $name, name_embedding: $name_embedding, summary: $summary, created_at: $created_at}
RETURN n.uuid AS uuid""",
uuid=self.uuid,
name=self.name,
summary=self.summary,
name_embedding=self.name_embedding,
created_at=self.created_at,
)
logger.info(f"Saved Node to neo4j: {self.uuid}")
return result