mirror of
https://github.com/getzep/graphiti.git
synced 2024-09-08 19:13:11 +03:00
* Makefile and format * fix podcast stuff * refactor: update import statement for transcript_parser in podcast_runner.py * format and linting * chore: Update import statements and remove unused code in maintenance module
340 lines
9.7 KiB
Python
340 lines
9.7 KiB
Python
import asyncio
|
|
import logging
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
from time import time
|
|
|
|
from neo4j import AsyncDriver
|
|
|
|
from core.edges import EntityEdge
|
|
from core.nodes import EntityNode, EpisodicNode
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
RELEVANT_SCHEMA_LIMIT = 3
|
|
|
|
|
|
async def get_mentioned_nodes(driver: AsyncDriver, episodes: list[EpisodicNode]):
|
|
episode_uuids = [episode.uuid for episode in episodes]
|
|
records, _, _ = await driver.execute_query(
|
|
"""
|
|
MATCH (episode:Episodic)-[:MENTIONS]->(n:Entity) WHERE episode.uuid IN $uuids
|
|
RETURN DISTINCT
|
|
n.uuid As uuid,
|
|
n.name AS name,
|
|
n.created_at AS created_at,
|
|
n.summary AS summary
|
|
""",
|
|
uuids=episode_uuids,
|
|
)
|
|
|
|
nodes: list[EntityNode] = []
|
|
|
|
for record in records:
|
|
nodes.append(
|
|
EntityNode(
|
|
uuid=record["uuid"],
|
|
name=record["name"],
|
|
labels=["Entity"],
|
|
created_at=datetime.now(),
|
|
summary=record["summary"],
|
|
)
|
|
)
|
|
|
|
return nodes
|
|
|
|
|
|
async def bfs(node_ids: list[str], driver: AsyncDriver):
|
|
records, _, _ = await driver.execute_query(
|
|
"""
|
|
MATCH (n WHERE n.uuid in $node_ids)-[r]->(m)
|
|
RETURN DISTINCT
|
|
n.uuid AS source_node_uuid,
|
|
n.name AS source_name,
|
|
n.summary AS source_summary,
|
|
m.uuid AS target_node_uuid,
|
|
m.name AS target_name,
|
|
m.summary AS target_summary,
|
|
r.uuid AS uuid,
|
|
r.created_at AS created_at,
|
|
r.name AS name,
|
|
r.fact AS fact,
|
|
r.fact_embedding AS fact_embedding,
|
|
r.episodes AS episodes,
|
|
r.expired_at AS expired_at,
|
|
r.valid_at AS valid_at,
|
|
r.invalid_at AS invalid_at
|
|
|
|
""",
|
|
node_ids=node_ids,
|
|
)
|
|
|
|
context = {}
|
|
|
|
for record in records:
|
|
n_uuid = record["source_node_uuid"]
|
|
if n_uuid in context:
|
|
context[n_uuid]["facts"].append(record["fact"])
|
|
else:
|
|
context[n_uuid] = {
|
|
"name": record["source_name"],
|
|
"summary": record["source_summary"],
|
|
"facts": [record["fact"]],
|
|
}
|
|
|
|
m_uuid = record["target_node_uuid"]
|
|
if m_uuid not in context:
|
|
context[m_uuid] = {
|
|
"name": record["target_name"],
|
|
"summary": record["target_summary"],
|
|
"facts": [],
|
|
}
|
|
logger.info(f"bfs search returned context: {context}")
|
|
return context
|
|
|
|
|
|
async def edge_similarity_search(
|
|
search_vector: list[float], driver: AsyncDriver, limit=RELEVANT_SCHEMA_LIMIT
|
|
) -> list[EntityEdge]:
|
|
# vector similarity search over embedded facts
|
|
records, _, _ = await driver.execute_query(
|
|
"""
|
|
CALL db.index.vector.queryRelationships("fact_embedding", 5, $search_vector)
|
|
YIELD relationship AS r, score
|
|
MATCH (n)-[r:RELATES_TO]->(m)
|
|
RETURN
|
|
r.uuid AS uuid,
|
|
n.uuid AS source_node_uuid,
|
|
m.uuid AS target_node_uuid,
|
|
r.created_at AS created_at,
|
|
r.name AS name,
|
|
r.fact AS fact,
|
|
r.fact_embedding AS fact_embedding,
|
|
r.episodes AS episodes,
|
|
r.expired_at AS expired_at,
|
|
r.valid_at AS valid_at,
|
|
r.invalid_at AS invalid_at
|
|
ORDER BY score DESC LIMIT $limit
|
|
""",
|
|
search_vector=search_vector,
|
|
limit=limit,
|
|
)
|
|
|
|
edges: list[EntityEdge] = []
|
|
|
|
now = datetime.now()
|
|
|
|
for record in records:
|
|
edge = EntityEdge(
|
|
uuid=record["uuid"],
|
|
source_node_uuid=record["source_node_uuid"],
|
|
target_node_uuid=record["target_node_uuid"],
|
|
fact=record["fact"],
|
|
name=record["name"],
|
|
episodes=record["episodes"],
|
|
fact_embedding=record["fact_embedding"],
|
|
created_at=now,
|
|
expired_at=now,
|
|
valid_at=now,
|
|
invalid_At=now,
|
|
)
|
|
|
|
edges.append(edge)
|
|
|
|
return edges
|
|
|
|
|
|
async def entity_similarity_search(
|
|
search_vector: list[float], driver: AsyncDriver, limit=RELEVANT_SCHEMA_LIMIT
|
|
) -> list[EntityNode]:
|
|
# vector similarity search over entity names
|
|
records, _, _ = await driver.execute_query(
|
|
"""
|
|
CALL db.index.vector.queryNodes("name_embedding", $limit, $search_vector)
|
|
YIELD node AS n, score
|
|
RETURN
|
|
n.uuid As uuid,
|
|
n.name AS name,
|
|
n.created_at AS created_at,
|
|
n.summary AS summary
|
|
ORDER BY score DESC
|
|
""",
|
|
search_vector=search_vector,
|
|
limit=limit,
|
|
)
|
|
nodes: list[EntityNode] = []
|
|
|
|
for record in records:
|
|
nodes.append(
|
|
EntityNode(
|
|
uuid=record["uuid"],
|
|
name=record["name"],
|
|
labels=["Entity"],
|
|
created_at=datetime.now(),
|
|
summary=record["summary"],
|
|
)
|
|
)
|
|
|
|
return nodes
|
|
|
|
|
|
async def entity_fulltext_search(
|
|
query: str, driver: AsyncDriver, limit=RELEVANT_SCHEMA_LIMIT
|
|
) -> list[EntityNode]:
|
|
# BM25 search to get top nodes
|
|
fuzzy_query = query + "~"
|
|
records, _, _ = await driver.execute_query(
|
|
"""
|
|
CALL db.index.fulltext.queryNodes("name_and_summary", $query) YIELD node, score
|
|
RETURN
|
|
node.uuid As uuid,
|
|
node.name AS name,
|
|
node.created_at AS created_at,
|
|
node.summary AS summary
|
|
ORDER BY score DESC
|
|
LIMIT $limit
|
|
""",
|
|
query=fuzzy_query,
|
|
limit=limit,
|
|
)
|
|
nodes: list[EntityNode] = []
|
|
|
|
for record in records:
|
|
nodes.append(
|
|
EntityNode(
|
|
uuid=record["uuid"],
|
|
name=record["name"],
|
|
labels=["Entity"],
|
|
created_at=datetime.now(),
|
|
summary=record["summary"],
|
|
)
|
|
)
|
|
|
|
return nodes
|
|
|
|
|
|
async def edge_fulltext_search(
|
|
query: str, driver: AsyncDriver, limit=RELEVANT_SCHEMA_LIMIT
|
|
) -> list[EntityEdge]:
|
|
# fulltext search over facts
|
|
fuzzy_query = query + "~"
|
|
|
|
records, _, _ = await driver.execute_query(
|
|
"""
|
|
CALL db.index.fulltext.queryRelationships("name_and_fact", $query)
|
|
YIELD relationship AS r, score
|
|
MATCH (n:Entity)-[r]->(m:Entity)
|
|
RETURN
|
|
r.uuid AS uuid,
|
|
n.uuid AS source_node_uuid,
|
|
m.uuid AS target_node_uuid,
|
|
r.created_at AS created_at,
|
|
r.name AS name,
|
|
r.fact AS fact,
|
|
r.fact_embedding AS fact_embedding,
|
|
r.episodes AS episodes,
|
|
r.expired_at AS expired_at,
|
|
r.valid_at AS valid_at,
|
|
r.invalid_at AS invalid_at
|
|
ORDER BY score DESC LIMIT $limit
|
|
""",
|
|
query=fuzzy_query,
|
|
limit=limit,
|
|
)
|
|
|
|
edges: list[EntityEdge] = []
|
|
|
|
now = datetime.now()
|
|
|
|
for record in records:
|
|
edge = EntityEdge(
|
|
uuid=record["uuid"],
|
|
source_node_uuid=record["source_node_uuid"],
|
|
target_node_uuid=record["target_node_uuid"],
|
|
fact=record["fact"],
|
|
name=record["name"],
|
|
episodes=record["episodes"],
|
|
fact_embedding=record["fact_embedding"],
|
|
created_at=now,
|
|
expired_at=now,
|
|
valid_at=now,
|
|
invalid_At=now,
|
|
)
|
|
|
|
edges.append(edge)
|
|
|
|
return edges
|
|
|
|
|
|
async def get_relevant_nodes(
|
|
nodes: list[EntityNode],
|
|
driver: AsyncDriver,
|
|
) -> list[EntityNode]:
|
|
start = time()
|
|
relevant_nodes: list[EntityNode] = []
|
|
relevant_node_uuids = set()
|
|
|
|
results = await asyncio.gather(
|
|
*[entity_fulltext_search(node.name, driver) for node in nodes],
|
|
*[entity_similarity_search(node.name_embedding, driver) for node in nodes],
|
|
)
|
|
|
|
for result in results:
|
|
for node in result:
|
|
if node.uuid in relevant_node_uuids:
|
|
continue
|
|
|
|
relevant_node_uuids.add(node.uuid)
|
|
relevant_nodes.append(node)
|
|
|
|
end = time()
|
|
logger.info(
|
|
f"Found relevant nodes: {relevant_node_uuids} in {(end - start) * 1000} ms"
|
|
)
|
|
|
|
return relevant_nodes
|
|
|
|
|
|
async def get_relevant_edges(
|
|
edges: list[EntityEdge],
|
|
driver: AsyncDriver,
|
|
) -> list[EntityEdge]:
|
|
start = time()
|
|
relevant_edges: list[EntityEdge] = []
|
|
relevant_edge_uuids = set()
|
|
|
|
results = await asyncio.gather(
|
|
*[edge_similarity_search(edge.fact_embedding, driver) for edge in edges],
|
|
*[edge_fulltext_search(edge.fact, driver) for edge in edges],
|
|
)
|
|
|
|
for result in results:
|
|
for edge in result:
|
|
if edge.uuid in relevant_edge_uuids:
|
|
continue
|
|
|
|
relevant_edge_uuids.add(edge.uuid)
|
|
relevant_edges.append(edge)
|
|
|
|
end = time()
|
|
logger.info(
|
|
f"Found relevant edges: {relevant_edge_uuids} in {(end - start) * 1000} ms"
|
|
)
|
|
|
|
return relevant_edges
|
|
|
|
|
|
# takes in a list of rankings of uuids
|
|
def rrf(results: list[list[str]], rank_const=1) -> list[str]:
|
|
scores: dict[str, int] = defaultdict(int)
|
|
for result in results:
|
|
for i, uuid in enumerate(result):
|
|
scores[uuid] += 1 / (i + rank_const)
|
|
|
|
scored_uuids = [term for term in scores.items()]
|
|
scored_uuids.sort(reverse=True, key=lambda term: term[1])
|
|
|
|
sorted_uuids = [term[0] for term in scored_uuids]
|
|
|
|
return sorted_uuids
|