# Pre-historic Knowledge Assistant Web App A web application for the RAG-based knowledge assistant. ## Features - Multiple LLM provider support (Azure OpenAI, OpenAI, Ollama, vLLM, custom endpoints) - Flexible embedding configuration - Web interface with real-time responses - REST API endpoints - Health check endpoint ## Setup 1. Install dependencies: ```bash pip install -r requirements.txt ``` 2. Create `.env` file from `.env.example`: ```bash cp .env.example .env # Edit .env with your configuration ``` 3. Run the application: ```bash python app.py # or ./run.sh ``` ## Configuration ### LLM Providers The application supports multiple LLM providers: - **Azure OpenAI**: Set `LLM_PROVIDER=azure_openai` and configure Azure credentials - **OpenAI**: Set `LLM_PROVIDER=openai` and provide API key - **Ollama**: Set `LLM_PROVIDER=ollama` and configure host URL - **vLLM**: Set `LLM_PROVIDER=vllm` and configure vLLM host - **Custom**: Set `LLM_PROVIDER=custom` for any OpenAI-compatible endpoint ### Environment Variables See `.env.example` for all available configuration options. ## API Endpoints - `GET /`: Web interface - `POST /ask`: Process question via web form - `POST /api/ask`: REST API endpoint for questions - `GET /api/health`: Health check endpoint ## Development To run in development mode with auto-reload: ```bash python app.py ``` The application will be available at `http://localhost:8000`.