mirror of
https://github.com/microsoft/graphrag.git
synced 2025-03-11 01:26:14 +03:00
* consolidate query api functions and remove code duplication * refactor and remove more code duplication * Add semversioner file * fix basic search * fix drift search and update base class function names * update example notebooks
161 lines
5.9 KiB
Python
161 lines
5.9 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
"""LocalSearch implementation."""
|
|
|
|
import logging
|
|
import time
|
|
from collections.abc import AsyncGenerator
|
|
from typing import Any
|
|
|
|
import tiktoken
|
|
|
|
from graphrag.prompts.query.local_search_system_prompt import (
|
|
LOCAL_SEARCH_SYSTEM_PROMPT,
|
|
)
|
|
from graphrag.query.context_builder.builders import LocalContextBuilder
|
|
from graphrag.query.context_builder.conversation_history import (
|
|
ConversationHistory,
|
|
)
|
|
from graphrag.query.llm.base import BaseLLM, BaseLLMCallback
|
|
from graphrag.query.llm.text_utils import num_tokens
|
|
from graphrag.query.structured_search.base import BaseSearch, SearchResult
|
|
|
|
DEFAULT_LLM_PARAMS = {
|
|
"max_tokens": 1500,
|
|
"temperature": 0.0,
|
|
}
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class LocalSearch(BaseSearch[LocalContextBuilder]):
|
|
"""Search orchestration for local search mode."""
|
|
|
|
def __init__(
|
|
self,
|
|
llm: BaseLLM,
|
|
context_builder: LocalContextBuilder,
|
|
token_encoder: tiktoken.Encoding | None = None,
|
|
system_prompt: str | None = None,
|
|
response_type: str = "multiple paragraphs",
|
|
callbacks: list[BaseLLMCallback] | None = None,
|
|
llm_params: dict[str, Any] = DEFAULT_LLM_PARAMS,
|
|
context_builder_params: dict | None = None,
|
|
):
|
|
super().__init__(
|
|
llm=llm,
|
|
context_builder=context_builder,
|
|
token_encoder=token_encoder,
|
|
llm_params=llm_params,
|
|
context_builder_params=context_builder_params or {},
|
|
)
|
|
self.system_prompt = system_prompt or LOCAL_SEARCH_SYSTEM_PROMPT
|
|
self.callbacks = callbacks
|
|
self.response_type = response_type
|
|
|
|
async def search(
|
|
self,
|
|
query: str,
|
|
conversation_history: ConversationHistory | None = None,
|
|
**kwargs,
|
|
) -> SearchResult:
|
|
"""Build local search context that fits a single context window and generate answer for the user query."""
|
|
start_time = time.time()
|
|
search_prompt = ""
|
|
llm_calls, prompt_tokens, output_tokens = {}, {}, {}
|
|
context_result = self.context_builder.build_context(
|
|
query=query,
|
|
conversation_history=conversation_history,
|
|
**kwargs,
|
|
**self.context_builder_params,
|
|
)
|
|
llm_calls["build_context"] = context_result.llm_calls
|
|
prompt_tokens["build_context"] = context_result.prompt_tokens
|
|
output_tokens["build_context"] = context_result.output_tokens
|
|
|
|
log.info("GENERATE ANSWER: %s. QUERY: %s", start_time, query)
|
|
try:
|
|
if "drift_query" in kwargs:
|
|
drift_query = kwargs["drift_query"]
|
|
search_prompt = self.system_prompt.format(
|
|
context_data=context_result.context_chunks,
|
|
response_type=self.response_type,
|
|
global_query=drift_query,
|
|
)
|
|
else:
|
|
search_prompt = self.system_prompt.format(
|
|
context_data=context_result.context_chunks,
|
|
response_type=self.response_type,
|
|
)
|
|
search_messages = [
|
|
{"role": "system", "content": search_prompt},
|
|
{"role": "user", "content": query},
|
|
]
|
|
|
|
response = await self.llm.agenerate(
|
|
messages=search_messages,
|
|
streaming=True,
|
|
callbacks=self.callbacks,
|
|
**self.llm_params,
|
|
)
|
|
llm_calls["response"] = 1
|
|
prompt_tokens["response"] = num_tokens(search_prompt, self.token_encoder)
|
|
output_tokens["response"] = num_tokens(response, self.token_encoder)
|
|
|
|
return SearchResult(
|
|
response=response,
|
|
context_data=context_result.context_records,
|
|
context_text=context_result.context_chunks,
|
|
completion_time=time.time() - start_time,
|
|
llm_calls=sum(llm_calls.values()),
|
|
prompt_tokens=sum(prompt_tokens.values()),
|
|
output_tokens=sum(output_tokens.values()),
|
|
llm_calls_categories=llm_calls,
|
|
prompt_tokens_categories=prompt_tokens,
|
|
output_tokens_categories=output_tokens,
|
|
)
|
|
|
|
except Exception:
|
|
log.exception("Exception in _asearch")
|
|
return SearchResult(
|
|
response="",
|
|
context_data=context_result.context_records,
|
|
context_text=context_result.context_chunks,
|
|
completion_time=time.time() - start_time,
|
|
llm_calls=1,
|
|
prompt_tokens=num_tokens(search_prompt, self.token_encoder),
|
|
output_tokens=0,
|
|
)
|
|
|
|
async def stream_search(
|
|
self,
|
|
query: str,
|
|
conversation_history: ConversationHistory | None = None,
|
|
) -> AsyncGenerator:
|
|
"""Build local search context that fits a single context window and generate answer for the user query."""
|
|
start_time = time.time()
|
|
|
|
context_result = self.context_builder.build_context(
|
|
query=query,
|
|
conversation_history=conversation_history,
|
|
**self.context_builder_params,
|
|
)
|
|
log.info("GENERATE ANSWER: %s. QUERY: %s", start_time, query)
|
|
search_prompt = self.system_prompt.format(
|
|
context_data=context_result.context_chunks, response_type=self.response_type
|
|
)
|
|
search_messages = [
|
|
{"role": "system", "content": search_prompt},
|
|
{"role": "user", "content": query},
|
|
]
|
|
|
|
# send context records first before sending the reduce response
|
|
yield context_result.context_records
|
|
async for response in self.llm.astream_generate( # type: ignore
|
|
messages=search_messages,
|
|
callbacks=self.callbacks,
|
|
**self.llm_params,
|
|
):
|
|
yield response
|