1
0
mirror of https://github.com/inzva/inzpeech.git synced 2021-06-01 09:25:07 +03:00
Files
inzpeech/preprocessing/preprocessed_feature_extraction.py
2020-11-13 20:55:08 +03:00

164 lines
5.8 KiB
Python

import os
import glob
import torch
import pickle
from os import listdir
from os.path import isfile, join
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
from scipy.fftpack import dct
from torch.utils.data import random_split, Dataset, DataLoader
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
def display_spectrogram(spectrogram):
librosa.display.specshow(spectrogram.transpose(), hop_length=220.5,y_axis='mel', fmax=8000, x_axis='s')
#getting 7 second in time axis, it should be 3, why???
plt.title('Mel Spectrogram')
plt.colorbar(format='%+2.0f dB')
plt.show()
def logmel_filterbanks(filename,pre_emphasis=0.97,frame_size = 0.025,frame_stride = 0.01,nfilt=40,normalize=True):
target_len = 66150
signal, sample_rate = librosa.load(filename,duration=3)
while(signal.shape[0] != target_len):
signal = np.append(signal, signal[:target_len - signal.shape[0]])
#Pre-Emphasis step
emphasized_signal = np.empty(shape=len(signal)+1)
emphasized_signal = np.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])
#Framing
frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate # Convert from seconds to samples
signal_length = len(emphasized_signal)
frame_length = int(round(frame_length))
frame_step = int(round(frame_step))
num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step)) + 1 # Make sure that we have at least 1 frame
pad_signal_length = num_frames * frame_step + frame_length
z = np.zeros((pad_signal_length - signal_length))
pad_signal = np.append(emphasized_signal, z) # Pad Signal to make sure that all frames have equal number of samples without truncating any samples from the original signal
indices = np.tile(np.arange(0, frame_length), (num_frames, 1)) + np.tile(np.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T
frames = pad_signal[indices.astype(np.int32, copy=False)]
#Hamming-Window
frames *= np.hamming(frame_length)
#FFT
NFFT = 512
mag_frames = np.absolute(np.fft.rfft(frames, NFFT)) # Magnitude of the FFT
pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2))
#Filter-Bank
low_freq_mel = 0
high_freq_mel = (2595 * np.log10(1 + (sample_rate / 2) / 700)) # Convert Hz to Mel
mel_points = np.linspace(low_freq_mel, high_freq_mel, nfilt + 2) # Equally spaced in Mel scale
hz_points = (700 * (10**(mel_points / 2595) - 1)) # Convert Mel to Hz
bin = np.floor((NFFT + 1) * hz_points / sample_rate)
fbank = np.zeros((nfilt, int(np.floor(NFFT / 2 + 1))))
for m in range(1, nfilt + 1):
f_m_minus = int(bin[m - 1]) # left
f_m = int(bin[m]) # center
f_m_plus = int(bin[m + 1]) # right
for k in range(f_m_minus, f_m):
fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
for k in range(f_m, f_m_plus):
fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter_banks = np.dot(pow_frames, fbank.T)
filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks) # Numerical Stability
filter_banks = 20 * np.log10(filter_banks) # dB
if normalize==True:
filter_banks = (filter_banks - filter_banks.mean()) / (filter_banks.max() - filter_banks.min())
return filter_banks
def mfcc(filter_banks,num_ceps=13):
return dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)]
dataset_dir = '/home/bbekci/datasets/vctk/wav48_silence_trimmed'
data = []
c2i, i2c = {}, {}
for indx, cla in enumerate(os.listdir(dataset_dir)):
main_path = dataset_dir + '/' + cla + '/*.flac'
for file_path in glob.glob(main_path):
data.append((file_path, cla))
c2i[cla] = indx
i2c[indx] = cla
with open('preprocessed_vctk.pkl', 'wb') as pickle_file:
result=[]
for i in range(0,len(data)):
sample = []
sound_path, class_name = data[i]
sound_data = logmel_filterbanks(sound_path)
label = c2i[class_name]
sample = [label, sound_data]
result.append((sample))
pickle.dump(result, pickle_file, protocol=pickle.HIGHEST_PROTOCOL)
f.close()
class PreprocessedDataset(Dataset):
def __init__(self, file_dir):
self.file_dir = file_dir
self.lst = 0
with open(file_dir, 'rb') as pickle_load:
self.lst = pickle.load(pickle_load)
def __len__(self):
return len(self.lst)
def n_class(self):
return self.lst[-1][0]
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
sound_data = self.lst[idx][1]
label = self.lst[idx][0]
sample = (sound_data, label)
return sample
dataset_dir = '/home/bbekci/inzpeech/preprocessed_vctk.pkl'
offset_dict = {}
max_epochs = 25
batch_size = 256
sound_data = PreprocessedDataset(file_dir=dataset_dir)
n_classes = sound_data.n_class()
train_data, test_data = random_split(sound_data,
[int(len(sound_data) * 0.8),
len(sound_data) - int(len(sound_data) * 0.8)]
)
train_dataset_loader = torch.utils.data.DataLoader(train_data,
batch_size=batch_size,
shuffle=True,
num_workers=4)
test_dataset_loader = torch.utils.data.DataLoader(test_data,
batch_size=batch_size,
shuffle=True,
num_workers=4)