mirror of
https://github.com/randaller/llama-chat.git
synced 2023-09-17 22:41:47 +03:00
114 lines
3.5 KiB
Python
114 lines
3.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
|
|
|
from typing import Tuple
|
|
import os
|
|
import sys
|
|
import torch
|
|
import fire
|
|
import time
|
|
import json
|
|
import pyarrow as pa
|
|
|
|
from pathlib import Path
|
|
|
|
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
|
|
|
|
|
def load(
|
|
ckpt_dir: str,
|
|
tokenizer_path: str,
|
|
max_seq_len: int,
|
|
max_batch_size: int,
|
|
) -> LLaMA:
|
|
start_time = time.time()
|
|
arrow_dir = Path(ckpt_dir).expanduser() / 'arrow'
|
|
|
|
if not arrow_dir.exists():
|
|
print('Converting checkpoints to arrow format')
|
|
checkpoints = sorted(Path(ckpt_dir).expanduser().glob("*.pth"))
|
|
for ckpt_file in checkpoints:
|
|
print(ckpt_file)
|
|
index = ckpt_file.parts[-1].split('.')[-2]
|
|
|
|
ckpt = torch.load(ckpt_file, map_location='cpu')
|
|
(arrow_dir / index).mkdir(parents=True, exist_ok=True)
|
|
for k, v in ckpt.items():
|
|
tens = pa.Tensor.from_numpy(v.numpy())
|
|
with pa.output_stream(arrow_dir / index / k) as f:
|
|
pa.ipc.write_tensor(tens, f)
|
|
ckpt = None
|
|
|
|
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
|
params = json.loads(f.read())
|
|
|
|
print("Loading checkpoint")
|
|
segments = sorted((arrow_dir / '00').glob("*"))
|
|
# print(segments)
|
|
|
|
checkpoint = {}
|
|
files = []
|
|
for seg in segments:
|
|
f = pa.memory_map(str(seg))
|
|
files.append(f)
|
|
t = pa.ipc.read_tensor(f).to_numpy()
|
|
t = torch.from_numpy(t)
|
|
checkpoint[seg.parts[-1]] = t
|
|
|
|
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
|
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
|
# torch.set_default_tensor_type(torch.FloatTensor)
|
|
|
|
model_args: ModelArgs = ModelArgs(
|
|
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
|
)
|
|
print("Loading tokenizer")
|
|
tokenizer = Tokenizer(model_path=tokenizer_path)
|
|
model_args.vocab_size = tokenizer.n_words
|
|
print("Loading model")
|
|
model = Transformer(model_args)
|
|
|
|
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
|
model.load_state_dict(torch.load(checkpoints[-1]), strict=False)
|
|
|
|
for f in files:
|
|
f.close()
|
|
files = None
|
|
|
|
generator = LLaMA(model, tokenizer)
|
|
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
|
return generator
|
|
|
|
|
|
def main(
|
|
ckpt_dir: str,
|
|
tokenizer_path: str,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95, # use 0.95 or so for top_p sampler, and 0.0 for top_k sampler
|
|
top_k: int = 40,
|
|
repetition_penalty: float = (1.0 / 0.85), # 1.0 to disable repetition_penalty
|
|
sampler: str = 'top_p', # top_p or top_k
|
|
max_seq_len: int = 2048,
|
|
max_batch_size: int = 1,
|
|
):
|
|
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
|
|
|
|
prompts = [
|
|
# "I believe the meaning of life is",
|
|
"""Write the Python code with detailed comments to generate 256 random integers in the range from -128 to 512, inclusive.
|
|
\\begin{code}\n""",
|
|
]
|
|
|
|
results = generator.generate(
|
|
prompts, max_gen_len=max_seq_len, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, sampler=sampler
|
|
)
|
|
|
|
for result in results:
|
|
print("\n==================================\n")
|
|
print(result)
|
|
print("\n==================================\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|