mirror of
https://github.com/abetlen/llama-cpp-python.git
synced 2023-09-07 17:34:22 +03:00
Update high-level api
This commit is contained in:
@@ -2,10 +2,11 @@ import os
|
|||||||
import uuid
|
import uuid
|
||||||
import time
|
import time
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
from typing import List, Optional
|
from typing import List, Optional, Union, Generator, Sequence
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
|
||||||
from . import llama_cpp
|
from . import llama_cpp
|
||||||
|
from .llama_types import *
|
||||||
|
|
||||||
|
|
||||||
class Llama:
|
class Llama:
|
||||||
@@ -14,7 +15,7 @@ class Llama:
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model_path: str,
|
model_path: str,
|
||||||
# NOTE: The following parameters are likely to change in the future.
|
# NOTE: These parameters are likely to change in the future.
|
||||||
n_ctx: int = 512,
|
n_ctx: int = 512,
|
||||||
n_parts: int = -1,
|
n_parts: int = -1,
|
||||||
seed: int = 1337,
|
seed: int = 1337,
|
||||||
@@ -24,7 +25,9 @@ class Llama:
|
|||||||
use_mlock: bool = False,
|
use_mlock: bool = False,
|
||||||
embedding: bool = False,
|
embedding: bool = False,
|
||||||
n_threads: Optional[int] = None,
|
n_threads: Optional[int] = None,
|
||||||
) -> "Llama":
|
n_batch: int = 8,
|
||||||
|
last_n_tokens_size: int = 64,
|
||||||
|
):
|
||||||
"""Load a llama.cpp model from `model_path`.
|
"""Load a llama.cpp model from `model_path`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -38,6 +41,8 @@ class Llama:
|
|||||||
use_mlock: Force the system to keep the model in RAM.
|
use_mlock: Force the system to keep the model in RAM.
|
||||||
embedding: Embedding mode only.
|
embedding: Embedding mode only.
|
||||||
n_threads: Number of threads to use. If None, the number of threads is automatically determined.
|
n_threads: Number of threads to use. If None, the number of threads is automatically determined.
|
||||||
|
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
||||||
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ValueError: If the model path does not exist.
|
ValueError: If the model path does not exist.
|
||||||
@@ -57,8 +62,8 @@ class Llama:
|
|||||||
self.params.use_mlock = use_mlock
|
self.params.use_mlock = use_mlock
|
||||||
self.params.embedding = embedding
|
self.params.embedding = embedding
|
||||||
|
|
||||||
self.last_n = 64
|
self.last_n_tokens_size = last_n_tokens_size
|
||||||
self.max_chunk_size = n_ctx
|
self.n_batch = n_batch
|
||||||
|
|
||||||
self.n_threads = n_threads or multiprocessing.cpu_count()
|
self.n_threads = n_threads or multiprocessing.cpu_count()
|
||||||
|
|
||||||
@@ -69,29 +74,33 @@ class Llama:
|
|||||||
self.model_path.encode("utf-8"), self.params
|
self.model_path.encode("utf-8"), self.params
|
||||||
)
|
)
|
||||||
|
|
||||||
def tokenize(self, text: bytes) -> List[int]:
|
def tokenize(self, text: bytes) -> List[llama_cpp.llama_token]:
|
||||||
"""Tokenize a string.
|
"""Tokenize a string.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
text: The utf-8 encoded string to tokenize.
|
text: The utf-8 encoded string to tokenize.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: If the tokenization failed.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A list of tokens.
|
A list of tokens.
|
||||||
"""
|
"""
|
||||||
|
assert self.ctx is not None
|
||||||
n_ctx = llama_cpp.llama_n_ctx(self.ctx)
|
n_ctx = llama_cpp.llama_n_ctx(self.ctx)
|
||||||
tokens = (llama_cpp.llama_token * n_ctx)()
|
tokens = (llama_cpp.llama_token * int(n_ctx))()
|
||||||
n_tokens = llama_cpp.llama_tokenize(
|
n_tokens = llama_cpp.llama_tokenize(
|
||||||
self.ctx,
|
self.ctx,
|
||||||
text,
|
text,
|
||||||
tokens,
|
tokens,
|
||||||
n_ctx,
|
n_ctx,
|
||||||
True,
|
llama_cpp.c_bool(True),
|
||||||
)
|
)
|
||||||
if n_tokens < 0:
|
if int(n_tokens) < 0:
|
||||||
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
|
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
|
||||||
return list(tokens[:n_tokens])
|
return list(tokens[:n_tokens])
|
||||||
|
|
||||||
def detokenize(self, tokens: List[int]) -> bytes:
|
def detokenize(self, tokens: List[llama_cpp.llama_token]) -> bytes:
|
||||||
"""Detokenize a list of tokens.
|
"""Detokenize a list of tokens.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -100,62 +109,98 @@ class Llama:
|
|||||||
Returns:
|
Returns:
|
||||||
The detokenized string.
|
The detokenized string.
|
||||||
"""
|
"""
|
||||||
|
assert self.ctx is not None
|
||||||
output = b""
|
output = b""
|
||||||
for token in tokens:
|
for token in tokens:
|
||||||
output += llama_cpp.llama_token_to_str(self.ctx, token)
|
output += llama_cpp.llama_token_to_str(self.ctx, token)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
def embed(self, text: str):
|
def generate(
|
||||||
|
self,
|
||||||
|
tokens: Sequence[llama_cpp.llama_token],
|
||||||
|
top_k: int,
|
||||||
|
top_p: float,
|
||||||
|
temp: float,
|
||||||
|
repeat_penalty: float,
|
||||||
|
) -> Generator[
|
||||||
|
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
|
||||||
|
]:
|
||||||
|
# Temporary workaround for https://github.com/ggerganov/llama.cpp/issues/684
|
||||||
|
if temp == 0.0:
|
||||||
|
temp = 1.0
|
||||||
|
top_p = 0.0
|
||||||
|
top_k = 1
|
||||||
|
assert self.ctx is not None
|
||||||
|
n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
|
||||||
|
n_tokens = 0
|
||||||
|
last_n_tokens = deque(
|
||||||
|
[llama_cpp.llama_token(0)] * self.last_n_tokens_size,
|
||||||
|
maxlen=self.last_n_tokens_size,
|
||||||
|
)
|
||||||
|
while True:
|
||||||
|
for i in range(0, len(tokens), self.n_batch):
|
||||||
|
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
||||||
|
n_past = min(n_ctx - len(batch), n_tokens)
|
||||||
|
return_code = llama_cpp.llama_eval(
|
||||||
|
ctx=self.ctx,
|
||||||
|
tokens=(llama_cpp.llama_token * len(batch))(*batch),
|
||||||
|
n_tokens=llama_cpp.c_int(len(batch)),
|
||||||
|
n_past=llama_cpp.c_int(n_past),
|
||||||
|
n_threads=llama_cpp.c_int(self.n_threads),
|
||||||
|
)
|
||||||
|
if int(return_code) != 0:
|
||||||
|
raise RuntimeError(f"llama_eval returned {return_code}")
|
||||||
|
last_n_tokens.extend(batch)
|
||||||
|
n_tokens += len(batch)
|
||||||
|
token = llama_cpp.llama_sample_top_p_top_k(
|
||||||
|
ctx=self.ctx,
|
||||||
|
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||||
|
*last_n_tokens
|
||||||
|
),
|
||||||
|
last_n_tokens_size=llama_cpp.c_int(self.last_n_tokens_size),
|
||||||
|
top_k=llama_cpp.c_int(top_k),
|
||||||
|
top_p=llama_cpp.c_float(top_p),
|
||||||
|
temp=llama_cpp.c_float(temp),
|
||||||
|
repeat_penalty=llama_cpp.c_float(repeat_penalty),
|
||||||
|
)
|
||||||
|
tokens_or_none = yield token
|
||||||
|
tokens = [token]
|
||||||
|
if tokens_or_none is not None:
|
||||||
|
tokens.extend(tokens_or_none)
|
||||||
|
|
||||||
|
def create_embedding(self, input: str) -> Embedding:
|
||||||
"""Embed a string.
|
"""Embed a string.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
text: The utf-8 encoded string to embed.
|
input: The utf-8 encoded string to embed.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A list of embeddings.
|
An embedding object.
|
||||||
"""
|
"""
|
||||||
tokens = self.tokenize(text.encode("utf-8"))
|
assert self.ctx is not None
|
||||||
self._eval(tokens, 0)
|
tokens = self.tokenize(input.encode("utf-8"))
|
||||||
embeddings = llama_cpp.llama_get_embeddings(self.ctx)
|
next(self.generate(tokens, top_k=0, top_p=0.0, temp=1.0, repeat_penalty=1.0))
|
||||||
return embeddings[:llama_cpp.llama_n_embd(self.ctx)]
|
n_tokens = len(tokens)
|
||||||
|
embedding = llama_cpp.llama_get_embeddings(self.ctx)[
|
||||||
|
: llama_cpp.llama_n_embd(self.ctx)
|
||||||
|
]
|
||||||
|
return {
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"object": "embedding",
|
||||||
|
"embedding": embedding,
|
||||||
|
"index": 0,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"model": self.model_path,
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": n_tokens,
|
||||||
|
"total_tokens": n_tokens,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
def _eval(self, tokens: List[int], n_past):
|
def _create_completion(
|
||||||
rc = llama_cpp.llama_eval(
|
|
||||||
self.ctx,
|
|
||||||
(llama_cpp.llama_token * len(tokens))(*tokens),
|
|
||||||
len(tokens),
|
|
||||||
n_past,
|
|
||||||
self.n_threads,
|
|
||||||
)
|
|
||||||
if rc != 0:
|
|
||||||
raise RuntimeError(f"Failed to evaluate: {rc}")
|
|
||||||
|
|
||||||
def _sample(self, last_n_tokens, top_p, top_k, temp, repeat_penalty):
|
|
||||||
return llama_cpp.llama_sample_top_p_top_k(
|
|
||||||
self.ctx,
|
|
||||||
(llama_cpp.llama_token * len(last_n_tokens))(*last_n_tokens),
|
|
||||||
len(last_n_tokens),
|
|
||||||
top_k=top_k,
|
|
||||||
top_p=top_p,
|
|
||||||
temp=temp,
|
|
||||||
repeat_penalty=repeat_penalty,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _generate(self, past_tokens, max_tokens, top_p, top_k, temp, repeat_penalty):
|
|
||||||
last_n_tokens = deque([0] * self.last_n, maxlen=self.last_n)
|
|
||||||
last_n_tokens.extend(past_tokens)
|
|
||||||
for i in range(max_tokens):
|
|
||||||
token = self._sample(
|
|
||||||
last_n_tokens,
|
|
||||||
top_p=top_p,
|
|
||||||
top_k=top_k,
|
|
||||||
temp=temp,
|
|
||||||
repeat_penalty=repeat_penalty,
|
|
||||||
)
|
|
||||||
yield token
|
|
||||||
self._eval([token], len(past_tokens) + i)
|
|
||||||
|
|
||||||
def _call(
|
|
||||||
self,
|
self,
|
||||||
prompt: str,
|
prompt: str,
|
||||||
suffix: Optional[str] = None,
|
suffix: Optional[str] = None,
|
||||||
@@ -168,28 +213,35 @@ class Llama:
|
|||||||
repeat_penalty: float = 1.1,
|
repeat_penalty: float = 1.1,
|
||||||
top_k: int = 40,
|
top_k: int = 40,
|
||||||
stream: bool = False,
|
stream: bool = False,
|
||||||
):
|
) -> Union[
|
||||||
|
Generator[Completion, None, None],
|
||||||
|
Generator[CompletionChunk, None, None],
|
||||||
|
]:
|
||||||
|
assert self.ctx is not None
|
||||||
completion_id = f"cmpl-{str(uuid.uuid4())}"
|
completion_id = f"cmpl-{str(uuid.uuid4())}"
|
||||||
created = int(time.time())
|
created = int(time.time())
|
||||||
completion_tokens = []
|
completion_tokens: List[llama_cpp.llama_token] = []
|
||||||
prompt_tokens = self.tokenize(prompt.encode("utf-8"))
|
# Add blank space to start of prompt to match OG llama tokenizer
|
||||||
|
prompt_tokens = self.tokenize(b" " + prompt.encode("utf-8"))
|
||||||
|
text = b""
|
||||||
|
|
||||||
if len(prompt_tokens) + max_tokens > llama_cpp.llama_n_ctx(self.ctx):
|
if len(prompt_tokens) + max_tokens > int(llama_cpp.llama_n_ctx(self.ctx)):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Process prompt in chunks to avoid running out of memory
|
if stop != []:
|
||||||
for i in range(0, len(prompt_tokens), self.max_chunk_size):
|
stop_bytes = [s.encode("utf-8") for s in stop]
|
||||||
chunk = prompt_tokens[i : min(len(prompt_tokens), i + self.max_chunk_size)]
|
else:
|
||||||
self._eval(chunk, n_past=i)
|
stop_bytes = []
|
||||||
|
|
||||||
if stop is not None:
|
|
||||||
stop = [s.encode("utf-8") for s in stop]
|
|
||||||
|
|
||||||
finish_reason = None
|
finish_reason = None
|
||||||
for token in self._generate(
|
for token in self.generate(
|
||||||
prompt_tokens, max_tokens, top_p, top_k, temperature, repeat_penalty
|
prompt_tokens,
|
||||||
|
top_k=top_k,
|
||||||
|
top_p=top_p,
|
||||||
|
temp=temperature,
|
||||||
|
repeat_penalty=repeat_penalty,
|
||||||
):
|
):
|
||||||
if token == llama_cpp.llama_token_eos():
|
if token == llama_cpp.llama_token_eos():
|
||||||
finish_reason = "stop"
|
finish_reason = "stop"
|
||||||
@@ -197,7 +249,7 @@ class Llama:
|
|||||||
completion_tokens.append(token)
|
completion_tokens.append(token)
|
||||||
|
|
||||||
text = self.detokenize(completion_tokens)
|
text = self.detokenize(completion_tokens)
|
||||||
any_stop = [s for s in stop if s in text]
|
any_stop = [s for s in stop_bytes if s in text]
|
||||||
if len(any_stop) > 0:
|
if len(any_stop) > 0:
|
||||||
first_stop = any_stop[0]
|
first_stop = any_stop[0]
|
||||||
text = text[: text.index(first_stop)]
|
text = text[: text.index(first_stop)]
|
||||||
@@ -207,7 +259,8 @@ class Llama:
|
|||||||
if stream:
|
if stream:
|
||||||
start = len(self.detokenize(completion_tokens[:-1]))
|
start = len(self.detokenize(completion_tokens[:-1]))
|
||||||
longest = 0
|
longest = 0
|
||||||
for s in stop:
|
# TODO: Clean up this mess
|
||||||
|
for s in stop_bytes:
|
||||||
for i in range(len(s), 0, -1):
|
for i in range(len(s), 0, -1):
|
||||||
if s[-i:] == text[-i:]:
|
if s[-i:] == text[-i:]:
|
||||||
if i > longest:
|
if i > longest:
|
||||||
@@ -262,9 +315,7 @@ class Llama:
|
|||||||
text = text + suffix
|
text = text + suffix
|
||||||
|
|
||||||
if logprobs is not None:
|
if logprobs is not None:
|
||||||
logprobs = llama_cpp.llama_get_logits(
|
raise NotImplementedError("logprobs not implemented")
|
||||||
self.ctx,
|
|
||||||
)[:logprobs]
|
|
||||||
|
|
||||||
yield {
|
yield {
|
||||||
"id": completion_id,
|
"id": completion_id,
|
||||||
@@ -275,7 +326,7 @@ class Llama:
|
|||||||
{
|
{
|
||||||
"text": text,
|
"text": text,
|
||||||
"index": 0,
|
"index": 0,
|
||||||
"logprobs": logprobs,
|
"logprobs": None,
|
||||||
"finish_reason": finish_reason,
|
"finish_reason": finish_reason,
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -286,11 +337,66 @@ class Llama:
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def create_completion(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
suffix: Optional[str] = None,
|
||||||
|
max_tokens: int = 128,
|
||||||
|
temperature: float = 0.8,
|
||||||
|
top_p: float = 0.95,
|
||||||
|
logprobs: Optional[int] = None,
|
||||||
|
echo: bool = False,
|
||||||
|
stop: List[str] = [],
|
||||||
|
repeat_penalty: float = 1.1,
|
||||||
|
top_k: int = 40,
|
||||||
|
stream: bool = False,
|
||||||
|
) -> Union[Completion, Generator[CompletionChunk, None, None]]:
|
||||||
|
"""Generate text from a prompt.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt: The prompt to generate text from.
|
||||||
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
||||||
|
max_tokens: The maximum number of tokens to generate.
|
||||||
|
temperature: The temperature to use for sampling.
|
||||||
|
top_p: The top-p value to use for sampling.
|
||||||
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
||||||
|
echo: Whether to echo the prompt.
|
||||||
|
stop: A list of strings to stop generation when encountered.
|
||||||
|
repeat_penalty: The penalty to apply to repeated tokens.
|
||||||
|
top_k: The top-k value to use for sampling.
|
||||||
|
stream: Whether to stream the results.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the requested tokens exceed the context window.
|
||||||
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Response object containing the generated text.
|
||||||
|
"""
|
||||||
|
completion_or_chunks = self._create_completion(
|
||||||
|
prompt=prompt,
|
||||||
|
suffix=suffix,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
temperature=temperature,
|
||||||
|
top_p=top_p,
|
||||||
|
logprobs=logprobs,
|
||||||
|
echo=echo,
|
||||||
|
stop=stop,
|
||||||
|
repeat_penalty=repeat_penalty,
|
||||||
|
top_k=top_k,
|
||||||
|
stream=stream,
|
||||||
|
)
|
||||||
|
if stream:
|
||||||
|
chunks: Generator[CompletionChunk, None, None] = completion_or_chunks
|
||||||
|
return chunks
|
||||||
|
completion: Completion = next(completion_or_chunks) # type: ignore
|
||||||
|
return completion
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
prompt: str,
|
prompt: str,
|
||||||
suffix: Optional[str] = None,
|
suffix: Optional[str] = None,
|
||||||
max_tokens: int = 16,
|
max_tokens: int = 128,
|
||||||
temperature: float = 0.8,
|
temperature: float = 0.8,
|
||||||
top_p: float = 0.95,
|
top_p: float = 0.95,
|
||||||
logprobs: Optional[int] = None,
|
logprobs: Optional[int] = None,
|
||||||
@@ -322,7 +428,7 @@ class Llama:
|
|||||||
Returns:
|
Returns:
|
||||||
Response object containing the generated text.
|
Response object containing the generated text.
|
||||||
"""
|
"""
|
||||||
call = self._call(
|
return self.create_completion(
|
||||||
prompt=prompt,
|
prompt=prompt,
|
||||||
suffix=suffix,
|
suffix=suffix,
|
||||||
max_tokens=max_tokens,
|
max_tokens=max_tokens,
|
||||||
@@ -335,9 +441,8 @@ class Llama:
|
|||||||
top_k=top_k,
|
top_k=top_k,
|
||||||
stream=stream,
|
stream=stream,
|
||||||
)
|
)
|
||||||
if stream:
|
|
||||||
return call
|
|
||||||
return next(call)
|
|
||||||
|
|
||||||
def __del__(self):
|
def __del__(self):
|
||||||
|
if self.ctx is not None:
|
||||||
llama_cpp.llama_free(self.ctx)
|
llama_cpp.llama_free(self.ctx)
|
||||||
|
self.ctx = None
|
||||||
|
|||||||
Reference in New Issue
Block a user