Add support for chat completion

This commit is contained in:
Andrei Betlen
2023-04-03 20:12:44 -04:00
parent 3dec778c90
commit 7fedf16531
3 changed files with 211 additions and 4 deletions

View File

@@ -1,7 +1,18 @@
"""Example FastAPI server for llama.cpp.
To run this example:
```bash
pip install fastapi uvicorn sse-starlette
export MODEL=../models/7B/...
uvicorn fastapi_server_chat:app --reload
```
Then visit http://localhost:8000/docs to see the interactive API docs.
"""
import json
from typing import List, Optional, Iterator
from typing import List, Optional, Literal, Union, Iterator
import llama_cpp
@@ -95,4 +106,67 @@ CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
response_model=CreateEmbeddingResponse,
)
def create_embedding(request: CreateEmbeddingRequest):
return llama.create_embedding(request.input)
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
class ChatCompletionRequestMessage(BaseModel):
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
content: str
user: Optional[str] = None
class CreateChatCompletionRequest(BaseModel):
model: Optional[str]
messages: List[ChatCompletionRequestMessage]
temperature: float = 0.8
top_p: float = 0.95
stream: bool = False
stop: List[str] = []
max_tokens: int = 128
repeat_penalty: float = 1.1
class Config:
schema_extra = {
"example": {
"messages": [
ChatCompletionRequestMessage(
role="system", content="You are a helpful assistant."
),
ChatCompletionRequestMessage(
role="user", content="What is the capital of France?"
),
]
}
}
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
@app.post(
"/v1/chat/completions",
response_model=CreateChatCompletionResponse,
)
async def create_chat_completion(
request: CreateChatCompletionRequest,
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
completion_or_chunks = llama.create_chat_completion(
**request.dict(exclude={"model"}),
)
if request.stream:
async def server_sent_events(
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
):
for chat_chunk in chat_chunks:
yield dict(data=json.dumps(chat_chunk))
yield dict(data="[DONE]")
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
return EventSourceResponse(
server_sent_events(chunks),
)
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
return completion