mirror of
https://github.com/abetlen/llama-cpp-python.git
synced 2023-09-07 17:34:22 +03:00
Merge branch 'main' of github.com:abetlen/llama_cpp_python into Maximilian-Winter/main
This commit is contained in:
@@ -5,7 +5,7 @@ import time
|
||||
import math
|
||||
import multiprocessing
|
||||
from typing import List, Optional, Union, Generator, Sequence, Iterator, Deque, Tuple
|
||||
from collections import deque
|
||||
from collections import deque, OrderedDict
|
||||
|
||||
from . import llama_cpp
|
||||
from .llama_types import *
|
||||
@@ -14,46 +14,59 @@ from .llama_types import *
|
||||
class LlamaCache:
|
||||
"""Cache for a llama.cpp model."""
|
||||
|
||||
def __init__(self):
|
||||
self.cache_state: Dict[Tuple[llama_cpp.llama_token, ...], "LlamaState"] = dict()
|
||||
def __init__(self, capacity_bytes: int = (2 << 30)):
|
||||
self.cache_state: OrderedDict[
|
||||
Tuple[llama_cpp.llama_token, ...], "LlamaState"
|
||||
] = OrderedDict()
|
||||
self.capacity_bytes = capacity_bytes
|
||||
|
||||
def _sorted_keys(self) -> List[Tuple[llama_cpp.llama_token, ...]]:
|
||||
return [
|
||||
key
|
||||
for _, key in sorted(
|
||||
((len(key), key) for key in self.cache_state.keys()), reverse=True
|
||||
)
|
||||
]
|
||||
@property
|
||||
def cache_size(self):
|
||||
return sum([state.llama_state_size for state in self.cache_state.values()])
|
||||
|
||||
def _find_key(
|
||||
self, key: Tuple[llama_cpp.llama_token, ...]
|
||||
def _find_longest_prefix_key(
|
||||
self,
|
||||
key: Tuple[llama_cpp.llama_token, ...],
|
||||
) -> Optional[Tuple[llama_cpp.llama_token, ...]]:
|
||||
for k in self._sorted_keys():
|
||||
if key[: len(k)] == k:
|
||||
return k
|
||||
return None
|
||||
min_len = 0
|
||||
min_key = None
|
||||
keys = (
|
||||
(k, Llama.longest_token_prefix(k, key)) for k in self.cache_state.keys()
|
||||
)
|
||||
for k, prefix_len in keys:
|
||||
if prefix_len > min_len:
|
||||
min_len = prefix_len
|
||||
min_key = k
|
||||
return min_key
|
||||
|
||||
def __getitem__(self, key: Sequence[llama_cpp.llama_token]) -> "LlamaState":
|
||||
_key = self._find_key(tuple(key))
|
||||
key = tuple(key)
|
||||
_key = self._find_longest_prefix_key(key)
|
||||
if _key is None:
|
||||
raise KeyError(f"Key not found: {key}")
|
||||
return self.cache_state[_key]
|
||||
raise KeyError(f"Key not found")
|
||||
value = self.cache_state[_key]
|
||||
self.cache_state.move_to_end(_key)
|
||||
return value
|
||||
|
||||
def __contains__(self, key: Sequence[llama_cpp.llama_token]) -> bool:
|
||||
return self._find_key(tuple(key)) is not None
|
||||
return self._find_longest_prefix_key(tuple(key)) is not None
|
||||
|
||||
def __setitem__(self, key: Sequence[llama_cpp.llama_token], value: "LlamaState"):
|
||||
self.cache_state = dict() # NOTE: Currently limit to one cache entry.
|
||||
self.cache_state[tuple(key)] = value
|
||||
key = tuple(key)
|
||||
if key in self.cache_state:
|
||||
del self.cache_state[key]
|
||||
self.cache_state[key] = value
|
||||
while self.cache_size > self.capacity_bytes:
|
||||
self.cache_state.popitem(last=False)
|
||||
|
||||
|
||||
class LlamaState:
|
||||
def __init__(
|
||||
self,
|
||||
eval_tokens: Deque[llama_cpp.llama_token],
|
||||
eval_logits: Deque[List[llama_cpp.c_float]],
|
||||
eval_logits: Deque[List[float]],
|
||||
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
|
||||
llama_state_size: llama_cpp.c_size_t,
|
||||
llama_state_size: int,
|
||||
):
|
||||
self.eval_tokens = eval_tokens
|
||||
self.eval_logits = eval_logits
|
||||
@@ -127,9 +140,7 @@ class Llama:
|
||||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.n_batch = min(n_ctx, n_batch)
|
||||
self.eval_tokens: Deque[llama_cpp.llama_token] = deque(maxlen=n_ctx)
|
||||
self.eval_logits: Deque[List[float]] = deque(
|
||||
maxlen=n_ctx if logits_all else 1
|
||||
)
|
||||
self.eval_logits: Deque[List[float]] = deque(maxlen=n_ctx if logits_all else 1)
|
||||
|
||||
self.cache: Optional[LlamaCache] = None
|
||||
|
||||
@@ -250,7 +261,7 @@ class Llama:
|
||||
]
|
||||
self.eval_logits.extend(logits)
|
||||
|
||||
def _sample_top_p_top_k(
|
||||
def _sample(
|
||||
self,
|
||||
last_n_tokens_data, # type: llama_cpp.Array[llama_cpp.llama_token]
|
||||
last_n_tokens_size: llama_cpp.c_int,
|
||||
@@ -263,6 +274,8 @@ class Llama:
|
||||
mirostat_mu: llama_cpp.c_float,
|
||||
mirostat_m: llama_cpp.c_int,
|
||||
repeat_penalty: llama_cpp.c_float,
|
||||
frequency_penalty: llama_cpp.c_float,
|
||||
presence_penalty: llama_cpp.c_float,
|
||||
):
|
||||
assert self.ctx is not None
|
||||
assert len(self.eval_logits) > 0
|
||||
@@ -289,24 +302,24 @@ class Llama:
|
||||
ctx=self.ctx,
|
||||
last_tokens_data=last_n_tokens_data,
|
||||
last_tokens_size=last_n_tokens_size,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
penalty=repeat_penalty,
|
||||
)
|
||||
if mirostat_mode == 1:
|
||||
if mirostat_mode.value == 1:
|
||||
llama_cpp.llama_sample_temperature(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
temp=temp,
|
||||
)
|
||||
llama_cpp.llama_sample_token_mirostat(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
tau=mirostat_tau,
|
||||
eta=mirostat_eta,
|
||||
mu=mirostat_mu,
|
||||
mu=llama_cpp.ctypes.byref(mirostat_mu), # type: ignore
|
||||
m=mirostat_m
|
||||
)
|
||||
elif mirostat_mode == 2:
|
||||
elif mirostat_mode.value == 2:
|
||||
llama_cpp.llama_sample_temperature(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
@@ -314,45 +327,57 @@ class Llama:
|
||||
)
|
||||
llama_cpp.llama_sample_token_mirostat_v2(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
tau=mirostat_tau,
|
||||
eta=mirostat_eta,
|
||||
mu=mirostat_mu
|
||||
mu=llama_cpp.ctypes.byref(mirostat_mu) # type: ignore
|
||||
)
|
||||
elif float(temp.value) == 0.0:
|
||||
llama_cpp.llama_sample_frequency_and_presence_penalties(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
last_tokens_data=last_n_tokens_data,
|
||||
last_tokens_size=last_n_tokens_size,
|
||||
alpha_frequency=frequency_penalty,
|
||||
alpha_presence=presence_penalty,
|
||||
)
|
||||
if float(temp.value) == 0.0:
|
||||
return llama_cpp.llama_sample_token_greedy(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
)
|
||||
else:
|
||||
llama_cpp.llama_sample_top_k(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
k=top_k,
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_tail_free(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
z=llama_cpp.c_float(1.0),
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_typical(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
p=llama_cpp.c_float(1.0),
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_top_p(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
p=top_p,
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_temperature(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
temp=temp,
|
||||
)
|
||||
return llama_cpp.llama_sample_token(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
)
|
||||
|
||||
def sample(
|
||||
@@ -366,6 +391,8 @@ class Llama:
|
||||
mirostat_mu: float,
|
||||
mirostat_m: int,
|
||||
repeat_penalty: float,
|
||||
frequency_penalty: float = 0.0,
|
||||
presence_penalty: float = 0.0,
|
||||
):
|
||||
"""Sample a token from the model.
|
||||
|
||||
@@ -382,7 +409,7 @@ class Llama:
|
||||
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
||||
0, self.last_n_tokens_size - len(self.eval_tokens)
|
||||
) + list(self.eval_tokens)[-self.last_n_tokens_size :]
|
||||
return self._sample_top_p_top_k(
|
||||
return self._sample(
|
||||
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||
*last_n_tokens_data
|
||||
),
|
||||
@@ -396,6 +423,8 @@ class Llama:
|
||||
mirostat_eta=llama_cpp.c_float(mirostat_eta),
|
||||
mirostat_m=llama_cpp.c_int(mirostat_m),
|
||||
repeat_penalty=llama_cpp.c_float(repeat_penalty),
|
||||
frequency_penalty=llama_cpp.c_float(frequency_penalty),
|
||||
presence_penalty=llama_cpp.c_float(presence_penalty),
|
||||
)
|
||||
|
||||
def generate(
|
||||
@@ -410,6 +439,8 @@ class Llama:
|
||||
mirostat_mu: float,
|
||||
mirostat_m: int,
|
||||
repeat_penalty: float,
|
||||
frequency_penalty: float = 0.0,
|
||||
presence_penalty: float = 0.0,
|
||||
reset: bool = True,
|
||||
) -> Generator[
|
||||
llama_cpp.llama_token, Optional[Sequence[llama_cpp.llama_token]], None
|
||||
@@ -468,6 +499,8 @@ class Llama:
|
||||
mirostat_eta=mirostat_eta,
|
||||
mirostat_mu=mirostat_mu,
|
||||
mirostat_m=mirostat_m,
|
||||
frequency_penalty=frequency_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
)
|
||||
tokens_or_none = yield token
|
||||
@@ -547,6 +580,8 @@ class Llama:
|
||||
logprobs: Optional[int] = None,
|
||||
echo: bool = False,
|
||||
stop: Optional[List[str]] = [],
|
||||
frequency_penalty: float = 0.0,
|
||||
presence_penalty: float = 0.0,
|
||||
repeat_penalty: float = 1.1,
|
||||
top_k: int = 40,
|
||||
stream: bool = False,
|
||||
@@ -581,10 +616,22 @@ class Llama:
|
||||
"logprobs is not supported for models created with logits_all=False"
|
||||
)
|
||||
|
||||
if self.cache and prompt_tokens in self.cache:
|
||||
if self.verbose:
|
||||
print("Llama._create_completion: cache hit", file=sys.stderr)
|
||||
self.load_state(self.cache[prompt_tokens])
|
||||
if self.cache:
|
||||
try:
|
||||
cache_item = self.cache[prompt_tokens]
|
||||
cache_prefix_len = Llama.longest_token_prefix(
|
||||
cache_item.eval_tokens, prompt_tokens
|
||||
)
|
||||
eval_prefix_len = Llama.longest_token_prefix(
|
||||
self.eval_tokens, prompt_tokens
|
||||
)
|
||||
if cache_prefix_len > eval_prefix_len:
|
||||
self.load_state(cache_item)
|
||||
if self.verbose:
|
||||
print("Llama._create_completion: cache hit", file=sys.stderr)
|
||||
except KeyError:
|
||||
if self.verbose:
|
||||
print("Llama._create_completion: cache miss", file=sys.stderr)
|
||||
|
||||
finish_reason = "length"
|
||||
multibyte_fix = 0
|
||||
@@ -598,6 +645,8 @@ class Llama:
|
||||
mirostat_eta=mirostat_eta,
|
||||
mirostat_mu=mirostat_mu,
|
||||
mirostat_m=mirostat_m,
|
||||
frequency_penalty=frequency_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
):
|
||||
if token == llama_cpp.llama_token_eos():
|
||||
@@ -605,12 +654,6 @@ class Llama:
|
||||
finish_reason = "stop"
|
||||
break
|
||||
|
||||
if self.cache and len(completion_tokens) == 0:
|
||||
if prompt_tokens not in self.cache:
|
||||
if self.verbose:
|
||||
print("Llama._create_completion: cache miss", file=sys.stderr)
|
||||
self.cache[prompt_tokens] = self.save_state()
|
||||
|
||||
completion_tokens.append(token)
|
||||
|
||||
all_text = self.detokenize(completion_tokens)
|
||||
@@ -669,6 +712,11 @@ class Llama:
|
||||
finish_reason = "length"
|
||||
break
|
||||
|
||||
if self.cache:
|
||||
if self.verbose:
|
||||
print("Llama._create_completion: cache save", file=sys.stderr)
|
||||
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
||||
|
||||
if stream:
|
||||
yield {
|
||||
"id": completion_id,
|
||||
@@ -778,6 +826,8 @@ class Llama:
|
||||
logprobs: Optional[int] = None,
|
||||
echo: bool = False,
|
||||
stop: Optional[List[str]] = [],
|
||||
frequency_penalty: float = 0.0,
|
||||
presence_penalty: float = 0.0,
|
||||
repeat_penalty: float = 1.1,
|
||||
top_k: int = 40,
|
||||
stream: bool = False,
|
||||
@@ -818,6 +868,8 @@ class Llama:
|
||||
logprobs=logprobs,
|
||||
echo=echo,
|
||||
stop=stop,
|
||||
frequency_penalty=frequency_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
top_k=top_k,
|
||||
stream=stream,
|
||||
@@ -843,6 +895,8 @@ class Llama:
|
||||
logprobs: Optional[int] = None,
|
||||
echo: bool = False,
|
||||
stop: Optional[List[str]] = [],
|
||||
frequency_penalty: float = 0.0,
|
||||
presence_penalty: float = 0.0,
|
||||
repeat_penalty: float = 1.1,
|
||||
top_k: int = 40,
|
||||
stream: bool = False,
|
||||
@@ -883,6 +937,8 @@ class Llama:
|
||||
logprobs=logprobs,
|
||||
echo=echo,
|
||||
stop=stop,
|
||||
frequency_penalty=frequency_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
top_k=top_k,
|
||||
stream=stream,
|
||||
@@ -955,6 +1011,8 @@ class Llama:
|
||||
stream: bool = False,
|
||||
stop: Optional[List[str]] = [],
|
||||
max_tokens: int = 256,
|
||||
presence_penalty: float = 0.0,
|
||||
frequency_penalty: float = 0.0,
|
||||
repeat_penalty: float = 1.1,
|
||||
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
||||
"""Generate a chat completion from a list of messages.
|
||||
@@ -988,6 +1046,8 @@ class Llama:
|
||||
stream=stream,
|
||||
max_tokens=max_tokens,
|
||||
repeat_penalty=repeat_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
)
|
||||
if stream:
|
||||
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
|
||||
@@ -1085,3 +1145,15 @@ class Llama:
|
||||
exps = [math.exp(float(x)) for x in logits]
|
||||
sum_exps = sum(exps)
|
||||
return [math.log(x / sum_exps) for x in exps]
|
||||
|
||||
@staticmethod
|
||||
def longest_token_prefix(
|
||||
a: Sequence[llama_cpp.llama_token], b: Sequence[llama_cpp.llama_token]
|
||||
):
|
||||
longest_prefix = 0
|
||||
for _a, _b in zip(a, b):
|
||||
if _a == _b:
|
||||
longest_prefix += 1
|
||||
else:
|
||||
break
|
||||
return longest_prefix
|
||||
|
||||
@@ -157,7 +157,7 @@ _lib.llama_context_default_params.argtypes = []
|
||||
_lib.llama_context_default_params.restype = llama_context_params
|
||||
|
||||
|
||||
def llama_mmap_supported() -> c_bool:
|
||||
def llama_mmap_supported() -> bool:
|
||||
return _lib.llama_mmap_supported()
|
||||
|
||||
|
||||
@@ -165,7 +165,7 @@ _lib.llama_mmap_supported.argtypes = []
|
||||
_lib.llama_mmap_supported.restype = c_bool
|
||||
|
||||
|
||||
def llama_mlock_supported() -> c_bool:
|
||||
def llama_mlock_supported() -> bool:
|
||||
return _lib.llama_mlock_supported()
|
||||
|
||||
|
||||
@@ -260,7 +260,7 @@ _lib.llama_get_state_size.restype = c_size_t
|
||||
# Returns the number of bytes copied
|
||||
def llama_copy_state_data(
|
||||
ctx: llama_context_p, dest # type: Array[c_uint8]
|
||||
) -> c_size_t:
|
||||
) -> int:
|
||||
return _lib.llama_copy_state_data(ctx, dest)
|
||||
|
||||
|
||||
@@ -272,7 +272,7 @@ _lib.llama_copy_state_data.restype = c_size_t
|
||||
# Returns the number of bytes read
|
||||
def llama_set_state_data(
|
||||
ctx: llama_context_p, src # type: Array[c_uint8]
|
||||
) -> c_size_t:
|
||||
) -> int:
|
||||
return _lib.llama_set_state_data(ctx, src)
|
||||
|
||||
|
||||
@@ -387,7 +387,9 @@ _lib.llama_n_embd.restype = c_int
|
||||
# Can be mutated in order to change the probabilities of the next token
|
||||
# Rows: n_tokens
|
||||
# Cols: n_vocab
|
||||
def llama_get_logits(ctx: llama_context_p): # type: (...) -> Array[float] # type: ignore
|
||||
def llama_get_logits(
|
||||
ctx: llama_context_p,
|
||||
): # type: (...) -> Array[float] # type: ignore
|
||||
return _lib.llama_get_logits(ctx)
|
||||
|
||||
|
||||
@@ -397,7 +399,9 @@ _lib.llama_get_logits.restype = c_float_p
|
||||
|
||||
# Get the embeddings for the input
|
||||
# shape: [n_embd] (1-dimensional)
|
||||
def llama_get_embeddings(ctx: llama_context_p): # type: (...) -> Array[float] # type: ignore
|
||||
def llama_get_embeddings(
|
||||
ctx: llama_context_p,
|
||||
): # type: (...) -> Array[float] # type: ignore
|
||||
return _lib.llama_get_embeddings(ctx)
|
||||
|
||||
|
||||
@@ -515,7 +519,7 @@ def llama_sample_top_k(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
k: c_int,
|
||||
min_keep: c_size_t = c_size_t(1),
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
|
||||
|
||||
@@ -534,7 +538,7 @@ def llama_sample_top_p(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
p: c_float,
|
||||
min_keep: c_size_t = c_size_t(1),
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
|
||||
|
||||
@@ -553,7 +557,7 @@ def llama_sample_tail_free(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
z: c_float,
|
||||
min_keep: c_size_t = c_size_t(1),
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
|
||||
|
||||
@@ -572,7 +576,7 @@ def llama_sample_typical(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
p: c_float,
|
||||
min_keep: c_size_t = c_size_t(1),
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
|
||||
|
||||
|
||||
@@ -58,7 +58,7 @@ class Completion(TypedDict):
|
||||
|
||||
|
||||
class ChatCompletionMessage(TypedDict):
|
||||
role: Union[Literal["assistant"], Literal["user"], Literal["system"]]
|
||||
role: Literal["assistant", "user", "system"]
|
||||
content: str
|
||||
user: NotRequired[str]
|
||||
|
||||
|
||||
@@ -31,16 +31,18 @@ from llama_cpp.server.app import create_app, Settings
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
for name, field in Settings.__fields__.items():
|
||||
description = field.field_info.description
|
||||
if field.default is not None and description is not None:
|
||||
description += f" (default: {field.default})"
|
||||
parser.add_argument(
|
||||
f"--{name}",
|
||||
dest=name,
|
||||
type=field.type_,
|
||||
default=field.default,
|
||||
help=field.field_info.description,
|
||||
help=description,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
settings = Settings(**vars(args))
|
||||
settings = Settings(**{k: v for k, v in vars(args).items() if v is not None})
|
||||
app = create_app(settings=settings)
|
||||
|
||||
uvicorn.run(
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import os
|
||||
import json
|
||||
import multiprocessing
|
||||
from threading import Lock
|
||||
from typing import List, Optional, Union, Iterator, Dict
|
||||
from typing_extensions import TypedDict, Literal, Annotated
|
||||
from typing_extensions import TypedDict, Literal
|
||||
|
||||
import llama_cpp
|
||||
|
||||
@@ -13,18 +13,48 @@ from sse_starlette.sse import EventSourceResponse
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
model: str
|
||||
n_ctx: int = 2048
|
||||
n_batch: int = 512
|
||||
n_threads: int = max((os.cpu_count() or 2) // 2, 1)
|
||||
f16_kv: bool = True
|
||||
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
|
||||
use_mmap: bool = True
|
||||
embedding: bool = True
|
||||
last_n_tokens_size: int = 64
|
||||
logits_all: bool = False
|
||||
cache: bool = False # WARNING: This is an experimental feature
|
||||
vocab_only: bool = False
|
||||
model: str = Field(
|
||||
description="The path to the model to use for generating completions."
|
||||
)
|
||||
n_ctx: int = Field(default=2048, ge=1, description="The context size.")
|
||||
n_batch: int = Field(
|
||||
default=512, ge=1, description="The batch size to use per eval."
|
||||
)
|
||||
n_threads: int = Field(
|
||||
default=max(multiprocessing.cpu_count() // 2, 1),
|
||||
ge=1,
|
||||
description="The number of threads to use.",
|
||||
)
|
||||
f16_kv: bool = Field(default=True, description="Whether to use f16 key/value.")
|
||||
use_mlock: bool = Field(
|
||||
default=llama_cpp.llama_mlock_supported(),
|
||||
description="Use mlock.",
|
||||
)
|
||||
use_mmap: bool = Field(
|
||||
default=llama_cpp.llama_mmap_supported(),
|
||||
description="Use mmap.",
|
||||
)
|
||||
embedding: bool = Field(default=True, description="Whether to use embeddings.")
|
||||
last_n_tokens_size: int = Field(
|
||||
default=64,
|
||||
ge=0,
|
||||
description="Last n tokens to keep for repeat penalty calculation.",
|
||||
)
|
||||
logits_all: bool = Field(default=True, description="Whether to return logits.")
|
||||
cache: bool = Field(
|
||||
default=False,
|
||||
description="Use a cache to reduce processing times for evaluated prompts.",
|
||||
)
|
||||
cache_size: int = Field(
|
||||
default=2 << 30,
|
||||
description="The size of the cache in bytes. Only used if cache is True.",
|
||||
)
|
||||
vocab_only: bool = Field(
|
||||
default=False, description="Whether to only return the vocabulary."
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default=True, description="Whether to print debug information."
|
||||
)
|
||||
|
||||
|
||||
router = APIRouter()
|
||||
@@ -60,9 +90,10 @@ def create_app(settings: Optional[Settings] = None):
|
||||
n_ctx=settings.n_ctx,
|
||||
last_n_tokens_size=settings.last_n_tokens_size,
|
||||
vocab_only=settings.vocab_only,
|
||||
verbose=settings.verbose,
|
||||
)
|
||||
if settings.cache:
|
||||
cache = llama_cpp.LlamaCache()
|
||||
cache = llama_cpp.LlamaCache(capacity_bytes=settings.cache_size)
|
||||
llama.set_cache(cache)
|
||||
return app
|
||||
|
||||
@@ -75,18 +106,78 @@ def get_llama():
|
||||
yield llama
|
||||
|
||||
|
||||
model_field = Field(description="The model to use for generating completions.")
|
||||
|
||||
max_tokens_field = Field(
|
||||
default=16, ge=1, le=2048, description="The maximum number of tokens to generate."
|
||||
)
|
||||
|
||||
temperature_field = Field(
|
||||
default=0.8,
|
||||
ge=0.0,
|
||||
le=2.0,
|
||||
description="Adjust the randomness of the generated text.\n\n"
|
||||
+ "Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run.",
|
||||
)
|
||||
|
||||
top_p_field = Field(
|
||||
default=0.95,
|
||||
ge=0.0,
|
||||
le=1.0,
|
||||
description="Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P.\n\n"
|
||||
+ "Top-p sampling, also known as nucleus sampling, is another text generation method that selects the next token from a subset of tokens that together have a cumulative probability of at least p. This method provides a balance between diversity and quality by considering both the probabilities of tokens and the number of tokens to sample from. A higher value for top_p (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text.",
|
||||
)
|
||||
|
||||
stop_field = Field(
|
||||
default=None,
|
||||
description="A list of tokens at which to stop generation. If None, no stop tokens are used.",
|
||||
)
|
||||
|
||||
stream_field = Field(
|
||||
default=False,
|
||||
description="Whether to stream the results as they are generated. Useful for chatbots.",
|
||||
)
|
||||
|
||||
top_k_field = Field(
|
||||
default=40,
|
||||
ge=0,
|
||||
description="Limit the next token selection to the K most probable tokens.\n\n"
|
||||
+ "Top-k sampling is a text generation method that selects the next token only from the top k most likely tokens predicted by the model. It helps reduce the risk of generating low-probability or nonsensical tokens, but it may also limit the diversity of the output. A higher value for top_k (e.g., 100) will consider more tokens and lead to more diverse text, while a lower value (e.g., 10) will focus on the most probable tokens and generate more conservative text.",
|
||||
)
|
||||
|
||||
repeat_penalty_field = Field(
|
||||
default=1.1,
|
||||
ge=0.0,
|
||||
description="A penalty applied to each token that is already generated. This helps prevent the model from repeating itself.\n\n"
|
||||
+ "Repeat penalty is a hyperparameter used to penalize the repetition of token sequences during text generation. It helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient.",
|
||||
)
|
||||
|
||||
|
||||
class CreateCompletionRequest(BaseModel):
|
||||
prompt: Union[str, List[str]]
|
||||
suffix: Optional[str] = Field(None)
|
||||
max_tokens: int = 16
|
||||
temperature: float = 0.8
|
||||
top_p: float = 0.95
|
||||
echo: bool = False
|
||||
stop: Optional[List[str]] = []
|
||||
stream: bool = False
|
||||
prompt: Optional[str] = Field(
|
||||
default="", description="The prompt to generate completions for."
|
||||
)
|
||||
suffix: Optional[str] = Field(
|
||||
default=None,
|
||||
description="A suffix to append to the generated text. If None, no suffix is appended. Useful for chatbots.",
|
||||
)
|
||||
max_tokens: int = max_tokens_field
|
||||
temperature: float = temperature_field
|
||||
top_p: float = top_p_field
|
||||
echo: bool = Field(
|
||||
default=False,
|
||||
description="Whether to echo the prompt in the generated text. Useful for chatbots.",
|
||||
)
|
||||
stop: Optional[List[str]] = stop_field
|
||||
stream: bool = stream_field
|
||||
logprobs: Optional[int] = Field(
|
||||
default=None,
|
||||
ge=0,
|
||||
description="The number of logprobs to generate. If None, no logprobs are generated.",
|
||||
)
|
||||
|
||||
# ignored or currently unsupported
|
||||
model: Optional[str] = Field(None)
|
||||
model: Optional[str] = model_field
|
||||
n: Optional[int] = 1
|
||||
logprobs: Optional[int] = Field(None)
|
||||
presence_penalty: Optional[float] = 0
|
||||
@@ -96,8 +187,8 @@ class CreateCompletionRequest(BaseModel):
|
||||
user: Optional[str] = Field(None)
|
||||
|
||||
# llama.cpp specific parameters
|
||||
top_k: int = 40
|
||||
repeat_penalty: float = 1.1
|
||||
top_k: int = top_k_field
|
||||
repeat_penalty: float = repeat_penalty_field
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
@@ -118,16 +209,11 @@ CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
||||
def create_completion(
|
||||
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
||||
):
|
||||
if isinstance(request.prompt, list):
|
||||
request.prompt = "".join(request.prompt)
|
||||
|
||||
completion_or_chunks = llama(
|
||||
**request.dict(
|
||||
exclude={
|
||||
"model",
|
||||
"n",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"best_of",
|
||||
"logit_bias",
|
||||
"user",
|
||||
@@ -142,8 +228,8 @@ def create_completion(
|
||||
|
||||
|
||||
class CreateEmbeddingRequest(BaseModel):
|
||||
model: Optional[str]
|
||||
input: str
|
||||
model: Optional[str] = model_field
|
||||
input: str = Field(description="The input to embed.")
|
||||
user: Optional[str]
|
||||
|
||||
class Config:
|
||||
@@ -168,22 +254,24 @@ def create_embedding(
|
||||
|
||||
|
||||
class ChatCompletionRequestMessage(BaseModel):
|
||||
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
|
||||
content: str
|
||||
user: Optional[str] = None
|
||||
role: Literal["system", "user", "assistant"] = Field(
|
||||
default="user", description="The role of the message."
|
||||
)
|
||||
content: str = Field(default="", description="The content of the message.")
|
||||
|
||||
|
||||
class CreateChatCompletionRequest(BaseModel):
|
||||
model: Optional[str]
|
||||
messages: List[ChatCompletionRequestMessage]
|
||||
temperature: float = 0.8
|
||||
top_p: float = 0.95
|
||||
stream: bool = False
|
||||
stop: Optional[List[str]] = []
|
||||
max_tokens: int = 128
|
||||
messages: List[ChatCompletionRequestMessage] = Field(
|
||||
default=[], description="A list of messages to generate completions for."
|
||||
)
|
||||
max_tokens: int = max_tokens_field
|
||||
temperature: float = temperature_field
|
||||
top_p: float = top_p_field
|
||||
stop: Optional[List[str]] = stop_field
|
||||
stream: bool = stream_field
|
||||
|
||||
# ignored or currently unsupported
|
||||
model: Optional[str] = Field(None)
|
||||
model: Optional[str] = model_field
|
||||
n: Optional[int] = 1
|
||||
presence_penalty: Optional[float] = 0
|
||||
frequency_penalty: Optional[float] = 0
|
||||
@@ -191,7 +279,8 @@ class CreateChatCompletionRequest(BaseModel):
|
||||
user: Optional[str] = Field(None)
|
||||
|
||||
# llama.cpp specific parameters
|
||||
repeat_penalty: float = 1.1
|
||||
top_k: int = top_k_field
|
||||
repeat_penalty: float = repeat_penalty_field
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
@@ -224,8 +313,6 @@ def create_chat_completion(
|
||||
exclude={
|
||||
"model",
|
||||
"n",
|
||||
"presence_penalty",
|
||||
"frequency_penalty",
|
||||
"logit_bias",
|
||||
"user",
|
||||
}
|
||||
@@ -266,7 +353,9 @@ GetModelResponse = create_model_from_typeddict(ModelList)
|
||||
|
||||
|
||||
@router.get("/v1/models", response_model=GetModelResponse)
|
||||
def get_models() -> ModelList:
|
||||
def get_models(
|
||||
llama: llama_cpp.Llama = Depends(get_llama),
|
||||
) -> ModelList:
|
||||
return {
|
||||
"object": "list",
|
||||
"data": [
|
||||
|
||||
Reference in New Issue
Block a user