mirror of
https://github.com/abetlen/llama-cpp-python.git
synced 2023-09-07 17:34:22 +03:00
Re-organize examples folder
This commit is contained in:
181
examples/high_level_api/fastapi_server.py
Normal file
181
examples/high_level_api/fastapi_server.py
Normal file
@@ -0,0 +1,181 @@
|
||||
"""Example FastAPI server for llama.cpp.
|
||||
|
||||
To run this example:
|
||||
|
||||
```bash
|
||||
pip install fastapi uvicorn sse-starlette
|
||||
export MODEL=../models/7B/...
|
||||
uvicorn fastapi_server_chat:app --reload
|
||||
```
|
||||
|
||||
Then visit http://localhost:8000/docs to see the interactive API docs.
|
||||
|
||||
"""
|
||||
import os
|
||||
import json
|
||||
from typing import List, Optional, Literal, Union, Iterator
|
||||
|
||||
import llama_cpp
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
model: str
|
||||
n_ctx: int = 2048
|
||||
n_batch: int = 2048
|
||||
n_threads: int = os.cpu_count() or 1
|
||||
f16_kv: bool = True
|
||||
use_mlock: bool = True
|
||||
embedding: bool = True
|
||||
last_n_tokens_size: int = 64
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="🦙 llama.cpp Python API",
|
||||
version="0.0.1",
|
||||
)
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
settings = Settings()
|
||||
llama = llama_cpp.Llama(
|
||||
settings.model,
|
||||
f16_kv=settings.f16_kv,
|
||||
use_mlock=settings.use_mlock,
|
||||
embedding=settings.embedding,
|
||||
n_threads=settings.n_threads,
|
||||
n_batch=settings.n_batch,
|
||||
n_ctx=settings.n_ctx,
|
||||
last_n_tokens_size=settings.last_n_tokens_size,
|
||||
)
|
||||
|
||||
|
||||
class CreateCompletionRequest(BaseModel):
|
||||
prompt: str
|
||||
suffix: Optional[str] = Field(None)
|
||||
max_tokens: int = 16
|
||||
temperature: float = 0.8
|
||||
top_p: float = 0.95
|
||||
logprobs: Optional[int] = Field(None)
|
||||
echo: bool = False
|
||||
stop: List[str] = []
|
||||
repeat_penalty: float = 1.1
|
||||
top_k: int = 40
|
||||
stream: bool = False
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||
"stop": ["\n", "###"],
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
||||
|
||||
|
||||
@app.post(
|
||||
"/v1/completions",
|
||||
response_model=CreateCompletionResponse,
|
||||
)
|
||||
def create_completion(request: CreateCompletionRequest):
|
||||
if request.stream:
|
||||
chunks: Iterator[llama_cpp.CompletionChunk] = llama(**request.dict()) # type: ignore
|
||||
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
|
||||
return llama(**request.dict())
|
||||
|
||||
|
||||
class CreateEmbeddingRequest(BaseModel):
|
||||
model: Optional[str]
|
||||
input: str
|
||||
user: Optional[str]
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"input": "The food was delicious and the waiter...",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
|
||||
|
||||
|
||||
@app.post(
|
||||
"/v1/embeddings",
|
||||
response_model=CreateEmbeddingResponse,
|
||||
)
|
||||
def create_embedding(request: CreateEmbeddingRequest):
|
||||
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
|
||||
|
||||
|
||||
class ChatCompletionRequestMessage(BaseModel):
|
||||
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
|
||||
content: str
|
||||
user: Optional[str] = None
|
||||
|
||||
|
||||
class CreateChatCompletionRequest(BaseModel):
|
||||
model: Optional[str]
|
||||
messages: List[ChatCompletionRequestMessage]
|
||||
temperature: float = 0.8
|
||||
top_p: float = 0.95
|
||||
stream: bool = False
|
||||
stop: List[str] = []
|
||||
max_tokens: int = 128
|
||||
repeat_penalty: float = 1.1
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"messages": [
|
||||
ChatCompletionRequestMessage(
|
||||
role="system", content="You are a helpful assistant."
|
||||
),
|
||||
ChatCompletionRequestMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
|
||||
|
||||
|
||||
@app.post(
|
||||
"/v1/chat/completions",
|
||||
response_model=CreateChatCompletionResponse,
|
||||
)
|
||||
async def create_chat_completion(
|
||||
request: CreateChatCompletionRequest,
|
||||
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
|
||||
completion_or_chunks = llama.create_chat_completion(
|
||||
**request.dict(exclude={"model"}),
|
||||
)
|
||||
|
||||
if request.stream:
|
||||
|
||||
async def server_sent_events(
|
||||
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
|
||||
):
|
||||
for chat_chunk in chat_chunks:
|
||||
yield dict(data=json.dumps(chat_chunk))
|
||||
yield dict(data="[DONE]")
|
||||
|
||||
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
|
||||
|
||||
return EventSourceResponse(
|
||||
server_sent_events(chunks),
|
||||
)
|
||||
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
|
||||
return completion
|
||||
11
examples/high_level_api/high_level_api_embedding.py
Normal file
11
examples/high_level_api/high_level_api_embedding.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import argparse
|
||||
|
||||
from llama_cpp import Llama
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-m", "--model", type=str, default=".//models/...")
|
||||
args = parser.parse_args()
|
||||
|
||||
llm = Llama(model_path=args.model, embedding=True)
|
||||
|
||||
print(llm.create_embedding("Hello world!"))
|
||||
19
examples/high_level_api/high_level_api_inference.py
Normal file
19
examples/high_level_api/high_level_api_inference.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import json
|
||||
import argparse
|
||||
|
||||
from llama_cpp import Llama
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-m", "--model", type=str, default="./models/...")
|
||||
args = parser.parse_args()
|
||||
|
||||
llm = Llama(model_path=args.model)
|
||||
|
||||
output = llm(
|
||||
"Question: What are the names of the planets in the solar system? Answer: ",
|
||||
max_tokens=48,
|
||||
stop=["Q:", "\n"],
|
||||
echo=True,
|
||||
)
|
||||
|
||||
print(json.dumps(output, indent=2))
|
||||
20
examples/high_level_api/high_level_api_streaming.py
Normal file
20
examples/high_level_api/high_level_api_streaming.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import json
|
||||
import argparse
|
||||
|
||||
from llama_cpp import Llama
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-m", "--model", type=str, default="./models/...")
|
||||
args = parser.parse_args()
|
||||
|
||||
llm = Llama(model_path=args.model)
|
||||
|
||||
stream = llm(
|
||||
"Question: What are the names of the planets in the solar system? Answer: ",
|
||||
max_tokens=48,
|
||||
stop=["Q:", "\n"],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
for output in stream:
|
||||
print(json.dumps(output, indent=2))
|
||||
55
examples/high_level_api/langchain_custom_llm.py
Normal file
55
examples/high_level_api/langchain_custom_llm.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import argparse
|
||||
|
||||
from llama_cpp import Llama
|
||||
|
||||
from langchain.llms.base import LLM
|
||||
from typing import Optional, List, Mapping, Any
|
||||
|
||||
|
||||
class LlamaLLM(LLM):
|
||||
model_path: str
|
||||
llm: Llama
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "llama-cpp-python"
|
||||
|
||||
def __init__(self, model_path: str, **kwargs: Any):
|
||||
model_path = model_path
|
||||
llm = Llama(model_path=model_path)
|
||||
super().__init__(model_path=model_path, llm=llm, **kwargs)
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
response = self.llm(prompt, stop=stop or [])
|
||||
return response["choices"][0]["text"]
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
return {"model_path": self.model_path}
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-m", "--model", type=str, default="./models/...")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load the model
|
||||
llm = LlamaLLM(model_path=args.model)
|
||||
|
||||
# Basic Q&A
|
||||
answer = llm(
|
||||
"Question: What is the capital of France? Answer: ", stop=["Question:", "\n"]
|
||||
)
|
||||
print(f"Answer: {answer.strip()}")
|
||||
|
||||
# Using in a chain
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.chains import LLMChain
|
||||
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["product"],
|
||||
template="\n\n### Instruction:\nWrite a good name for a company that makes {product}\n\n### Response:\n",
|
||||
)
|
||||
chain = LLMChain(llm=llm, prompt=prompt)
|
||||
|
||||
# Run the chain only specifying the input variable.
|
||||
print(chain.run("colorful socks"))
|
||||
Reference in New Issue
Block a user