Re-organize examples folder

This commit is contained in:
Andrei Betlen
2023-04-05 04:10:13 -04:00
parent c16bda5fb9
commit c8e13a78d0
6 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,181 @@
"""Example FastAPI server for llama.cpp.
To run this example:
```bash
pip install fastapi uvicorn sse-starlette
export MODEL=../models/7B/...
uvicorn fastapi_server_chat:app --reload
```
Then visit http://localhost:8000/docs to see the interactive API docs.
"""
import os
import json
from typing import List, Optional, Literal, Union, Iterator
import llama_cpp
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
from sse_starlette.sse import EventSourceResponse
class Settings(BaseSettings):
model: str
n_ctx: int = 2048
n_batch: int = 2048
n_threads: int = os.cpu_count() or 1
f16_kv: bool = True
use_mlock: bool = True
embedding: bool = True
last_n_tokens_size: int = 64
app = FastAPI(
title="🦙 llama.cpp Python API",
version="0.0.1",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
settings = Settings()
llama = llama_cpp.Llama(
settings.model,
f16_kv=settings.f16_kv,
use_mlock=settings.use_mlock,
embedding=settings.embedding,
n_threads=settings.n_threads,
n_batch=settings.n_batch,
n_ctx=settings.n_ctx,
last_n_tokens_size=settings.last_n_tokens_size,
)
class CreateCompletionRequest(BaseModel):
prompt: str
suffix: Optional[str] = Field(None)
max_tokens: int = 16
temperature: float = 0.8
top_p: float = 0.95
logprobs: Optional[int] = Field(None)
echo: bool = False
stop: List[str] = []
repeat_penalty: float = 1.1
top_k: int = 40
stream: bool = False
class Config:
schema_extra = {
"example": {
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
"stop": ["\n", "###"],
}
}
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
@app.post(
"/v1/completions",
response_model=CreateCompletionResponse,
)
def create_completion(request: CreateCompletionRequest):
if request.stream:
chunks: Iterator[llama_cpp.CompletionChunk] = llama(**request.dict()) # type: ignore
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
return llama(**request.dict())
class CreateEmbeddingRequest(BaseModel):
model: Optional[str]
input: str
user: Optional[str]
class Config:
schema_extra = {
"example": {
"input": "The food was delicious and the waiter...",
}
}
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
@app.post(
"/v1/embeddings",
response_model=CreateEmbeddingResponse,
)
def create_embedding(request: CreateEmbeddingRequest):
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
class ChatCompletionRequestMessage(BaseModel):
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
content: str
user: Optional[str] = None
class CreateChatCompletionRequest(BaseModel):
model: Optional[str]
messages: List[ChatCompletionRequestMessage]
temperature: float = 0.8
top_p: float = 0.95
stream: bool = False
stop: List[str] = []
max_tokens: int = 128
repeat_penalty: float = 1.1
class Config:
schema_extra = {
"example": {
"messages": [
ChatCompletionRequestMessage(
role="system", content="You are a helpful assistant."
),
ChatCompletionRequestMessage(
role="user", content="What is the capital of France?"
),
]
}
}
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
@app.post(
"/v1/chat/completions",
response_model=CreateChatCompletionResponse,
)
async def create_chat_completion(
request: CreateChatCompletionRequest,
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
completion_or_chunks = llama.create_chat_completion(
**request.dict(exclude={"model"}),
)
if request.stream:
async def server_sent_events(
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
):
for chat_chunk in chat_chunks:
yield dict(data=json.dumps(chat_chunk))
yield dict(data="[DONE]")
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
return EventSourceResponse(
server_sent_events(chunks),
)
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
return completion

View File

@@ -0,0 +1,11 @@
import argparse
from llama_cpp import Llama
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default=".//models/...")
args = parser.parse_args()
llm = Llama(model_path=args.model, embedding=True)
print(llm.create_embedding("Hello world!"))

View File

@@ -0,0 +1,19 @@
import json
import argparse
from llama_cpp import Llama
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="./models/...")
args = parser.parse_args()
llm = Llama(model_path=args.model)
output = llm(
"Question: What are the names of the planets in the solar system? Answer: ",
max_tokens=48,
stop=["Q:", "\n"],
echo=True,
)
print(json.dumps(output, indent=2))

View File

@@ -0,0 +1,20 @@
import json
import argparse
from llama_cpp import Llama
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="./models/...")
args = parser.parse_args()
llm = Llama(model_path=args.model)
stream = llm(
"Question: What are the names of the planets in the solar system? Answer: ",
max_tokens=48,
stop=["Q:", "\n"],
stream=True,
)
for output in stream:
print(json.dumps(output, indent=2))

View File

@@ -0,0 +1,55 @@
import argparse
from llama_cpp import Llama
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
class LlamaLLM(LLM):
model_path: str
llm: Llama
@property
def _llm_type(self) -> str:
return "llama-cpp-python"
def __init__(self, model_path: str, **kwargs: Any):
model_path = model_path
llm = Llama(model_path=model_path)
super().__init__(model_path=model_path, llm=llm, **kwargs)
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
response = self.llm(prompt, stop=stop or [])
return response["choices"][0]["text"]
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"model_path": self.model_path}
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="./models/...")
args = parser.parse_args()
# Load the model
llm = LlamaLLM(model_path=args.model)
# Basic Q&A
answer = llm(
"Question: What is the capital of France? Answer: ", stop=["Question:", "\n"]
)
print(f"Answer: {answer.strip()}")
# Using in a chain
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate(
input_variables=["product"],
template="\n\n### Instruction:\nWrite a good name for a company that makes {product}\n\n### Response:\n",
)
chain = LLMChain(llm=llm, prompt=prompt)
# Run the chain only specifying the input variable.
print(chain.run("colorful socks"))