Files
llm-claude-3/llm_claude_3.py
2024-12-17 11:48:24 -08:00

287 lines
10 KiB
Python

from anthropic import Anthropic, AsyncAnthropic
import llm
from pydantic import Field, field_validator, model_validator
from typing import Optional, List
@llm.hookimpl
def register_models(register):
# https://docs.anthropic.com/claude/docs/models-overview
register(
ClaudeMessages("claude-3-opus-20240229"),
AsyncClaudeMessages("claude-3-opus-20240229"),
),
register(
ClaudeMessages("claude-3-opus-latest"),
AsyncClaudeMessages("claude-3-opus-latest"),
aliases=("claude-3-opus",),
)
register(
ClaudeMessages("claude-3-sonnet-20240229"),
AsyncClaudeMessages("claude-3-sonnet-20240229"),
aliases=("claude-3-sonnet",),
)
register(
ClaudeMessages("claude-3-haiku-20240307"),
AsyncClaudeMessages("claude-3-haiku-20240307"),
aliases=("claude-3-haiku",),
)
# 3.5 models
register(
ClaudeMessagesLong("claude-3-5-sonnet-20240620", supports_pdf=True),
AsyncClaudeMessagesLong("claude-3-5-sonnet-20240620", supports_pdf=True),
)
register(
ClaudeMessagesLong("claude-3-5-sonnet-20241022", supports_pdf=True),
AsyncClaudeMessagesLong("claude-3-5-sonnet-20241022", supports_pdf=True),
)
register(
ClaudeMessagesLong("claude-3-5-sonnet-latest", supports_pdf=True),
AsyncClaudeMessagesLong("claude-3-5-sonnet-latest", supports_pdf=True),
aliases=("claude-3.5-sonnet", "claude-3.5-sonnet-latest"),
)
register(
ClaudeMessagesLong("claude-3-5-haiku-latest", supports_images=False),
AsyncClaudeMessagesLong("claude-3-5-haiku-latest", supports_images=False),
aliases=("claude-3.5-haiku",),
)
class ClaudeOptions(llm.Options):
max_tokens: Optional[int] = Field(
description="The maximum number of tokens to generate before stopping",
default=4_096,
)
temperature: Optional[float] = Field(
description="Amount of randomness injected into the response. Defaults to 1.0. Ranges from 0.0 to 1.0. Use temperature closer to 0.0 for analytical / multiple choice, and closer to 1.0 for creative and generative tasks. Note that even with temperature of 0.0, the results will not be fully deterministic.",
default=1.0,
)
top_p: Optional[float] = Field(
description="Use nucleus sampling. In nucleus sampling, we compute the cumulative distribution over all the options for each subsequent token in decreasing probability order and cut it off once it reaches a particular probability specified by top_p. You should either alter temperature or top_p, but not both. Recommended for advanced use cases only. You usually only need to use temperature.",
default=None,
)
top_k: Optional[int] = Field(
description="Only sample from the top K options for each subsequent token. Used to remove 'long tail' low probability responses. Recommended for advanced use cases only. You usually only need to use temperature.",
default=None,
)
user_id: Optional[str] = Field(
description="An external identifier for the user who is associated with the request",
default=None,
)
@field_validator("max_tokens")
@classmethod
def validate_max_tokens(cls, max_tokens):
real_max = cls.model_fields["max_tokens"].default
if not (0 < max_tokens <= real_max):
raise ValueError("max_tokens must be in range 1-{}".format(real_max))
return max_tokens
@field_validator("temperature")
@classmethod
def validate_temperature(cls, temperature):
if not (0.0 <= temperature <= 1.0):
raise ValueError("temperature must be in range 0.0-1.0")
return temperature
@field_validator("top_p")
@classmethod
def validate_top_p(cls, top_p):
if top_p is not None and not (0.0 <= top_p <= 1.0):
raise ValueError("top_p must be in range 0.0-1.0")
return top_p
@field_validator("top_k")
@classmethod
def validate_top_k(cls, top_k):
if top_k is not None and top_k <= 0:
raise ValueError("top_k must be a positive integer")
return top_k
@model_validator(mode="after")
def validate_temperature_top_p(self):
if self.temperature != 1.0 and self.top_p is not None:
raise ValueError("Only one of temperature and top_p can be set")
return self
long_field = Field(
description="The maximum number of tokens to generate before stopping",
default=4_096 * 2,
)
class _Shared:
needs_key = "claude"
key_env_var = "ANTHROPIC_API_KEY"
can_stream = True
class Options(ClaudeOptions): ...
def __init__(
self,
model_id,
claude_model_id=None,
extra_headers=None,
supports_images=True,
supports_pdf=False,
):
self.model_id = model_id
self.claude_model_id = claude_model_id or model_id
self.extra_headers = extra_headers or {}
if supports_pdf:
self.extra_headers["anthropic-beta"] = "pdfs-2024-09-25"
self.attachment_types = set()
if supports_images:
self.attachment_types.update(
{
"image/png",
"image/jpeg",
"image/webp",
"image/gif",
}
)
if supports_pdf:
self.attachment_types.add("application/pdf")
def build_messages(self, prompt, conversation) -> List[dict]:
messages = []
if conversation:
for response in conversation.responses:
if response.attachments:
content = [
{
"type": (
"document"
if attachment.resolve_type() == "application/pdf"
else "image"
),
"source": {
"data": attachment.base64_content(),
"media_type": attachment.resolve_type(),
"type": "base64",
},
}
for attachment in response.attachments
]
content.append({"type": "text", "text": response.prompt.prompt})
else:
content = response.prompt.prompt
messages.extend(
[
{
"role": "user",
"content": content,
},
{"role": "assistant", "content": response.text()},
]
)
if prompt.attachments:
content = [
{
"type": (
"document"
if attachment.resolve_type() == "application/pdf"
else "image"
),
"source": {
"data": attachment.base64_content(),
"media_type": attachment.resolve_type(),
"type": "base64",
},
}
for attachment in prompt.attachments
]
content.append({"type": "text", "text": prompt.prompt})
messages.append(
{
"role": "user",
"content": content,
}
)
else:
messages.append({"role": "user", "content": prompt.prompt})
return messages
def build_kwargs(self, prompt, conversation):
kwargs = {
"model": self.claude_model_id,
"messages": self.build_messages(prompt, conversation),
"max_tokens": prompt.options.max_tokens,
}
if prompt.options.user_id:
kwargs["metadata"] = {"user_id": prompt.options.user_id}
if prompt.options.top_p:
kwargs["top_p"] = prompt.options.top_p
else:
kwargs["temperature"] = prompt.options.temperature
if prompt.options.top_k:
kwargs["top_k"] = prompt.options.top_k
if prompt.system:
kwargs["system"] = prompt.system
if self.extra_headers:
kwargs["extra_headers"] = self.extra_headers
return kwargs
def set_usage(self, response):
usage = response.response_json.pop("usage")
if usage:
response.set_usage(
input=usage.get("input_tokens"), output=usage.get("output_tokens")
)
def __str__(self):
return "Anthropic Messages: {}".format(self.model_id)
class ClaudeMessages(_Shared, llm.Model):
def execute(self, prompt, stream, response, conversation):
client = Anthropic(api_key=self.get_key())
kwargs = self.build_kwargs(prompt, conversation)
if stream:
with client.messages.stream(**kwargs) as stream:
for text in stream.text_stream:
yield text
# This records usage and other data:
response.response_json = stream.get_final_message().model_dump()
else:
completion = client.messages.create(**kwargs)
yield completion.content[0].text
response.response_json = completion.model_dump()
self.set_usage(response)
class ClaudeMessagesLong(ClaudeMessages):
class Options(ClaudeOptions):
max_tokens: Optional[int] = long_field
class AsyncClaudeMessages(_Shared, llm.AsyncModel):
async def execute(self, prompt, stream, response, conversation):
client = AsyncAnthropic(api_key=self.get_key())
kwargs = self.build_kwargs(prompt, conversation)
if stream:
async with client.messages.stream(**kwargs) as stream_obj:
async for text in stream_obj.text_stream:
yield text
response.response_json = (await stream_obj.get_final_message()).model_dump()
else:
completion = await client.messages.create(**kwargs)
yield completion.content[0].text
response.response_json = completion.model_dump()
self.set_usage(response)
class AsyncClaudeMessagesLong(AsyncClaudeMessages):
class Options(ClaudeOptions):
max_tokens: Optional[int] = long_field