mirror of
https://github.com/pinecone-io/examples.git
synced 2023-10-11 20:04:54 +03:00
added more resources from beyond search openai webinar
This commit is contained in:
3
integrations/openai/beyond_search_webinar/README.md
Normal file
3
integrations/openai/beyond_search_webinar/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Beyond Search with OpenAI and Pinecone
|
||||
|
||||
In this repository we have notebooks and source code used to build the [OpenAI x Pinecone Q&A app](https://share.streamlit.io/pinecone-io/playground/beyond_search_openai/src/server.py). You can find more information in [our webinar here](https://www.youtube.com/watch?v=HtI9easWtAA).
|
||||
272
integrations/openai/beyond_search_webinar/app.py
Normal file
272
integrations/openai/beyond_search_webinar/app.py
Normal file
@@ -0,0 +1,272 @@
|
||||
import streamlit as st
|
||||
import pinecone
|
||||
import openai
|
||||
from openai.embeddings_utils import get_embedding
|
||||
import json
|
||||
|
||||
OPENAI_KEY = st.secrets["OPENAI_KEY"]
|
||||
PINECONE_KEY = st.secrets["PINECONE_KEY"]
|
||||
INDEX = 'apr-demo'
|
||||
instructions = {
|
||||
"conservative q&a": "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nAnswer:",
|
||||
"paragraph about a question":"Write a paragraph, addressing the question, and use the text below to obtain relevant information\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nParagraph long Answer:",
|
||||
"bullet points": "Write a bullet point list of possible answers, addressing the question, and use the text below to obtain relevant information\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nBullet point Answer:",
|
||||
"summarize problems given a topic": "Write a summary of the problems addressed by the questions below\"\n\n{0}\n\n---\n\n",
|
||||
"extract key libraries and tools": "Write a list of libraries and tools present in the context below\"\n\nContext:\n{0}\n\n---\n\n",
|
||||
"simple instructions": "{1} given the common questions and answers below \n\n{0}\n\n---\n\n",
|
||||
"summarize": "Write an elaborate, paragraph long summary about \"{1}\" given the questions and answers from a public forum on this topic\n\n{0}\n\n---\n\nSummary:",
|
||||
}
|
||||
|
||||
@st.experimental_singleton(show_spinner=False)
|
||||
def init_openai():
|
||||
# initialize connection to OpenAI
|
||||
openai.api_key = OPENAI_KEY
|
||||
|
||||
@st.experimental_singleton(show_spinner=False)
|
||||
def init_key_value():
|
||||
with open('./beyond_search_openai/src/beyond_search/mapping.json', 'r') as fp:
|
||||
mappings = json.load(fp)
|
||||
return mappings
|
||||
|
||||
@st.experimental_singleton(show_spinner=False)
|
||||
def init_pinecone(index_name):
|
||||
# initialize connection to Pinecone vector DB (app.pinecone.io for API key)
|
||||
pinecone.init(
|
||||
api_key=PINECONE_KEY,
|
||||
environment='us-west1-gcp'
|
||||
)
|
||||
index = pinecone.Index(index_name)
|
||||
stats = index.describe_index_stats()
|
||||
dims = stats['dimension']
|
||||
count = stats['namespaces']['']['vector_count']
|
||||
return index, dims, count
|
||||
|
||||
def create_context(question, index, mappings, lib_meta, max_len=3750, size="curie", top_k=5):
|
||||
"""
|
||||
Find most relevant context for a question via Pinecone search
|
||||
"""
|
||||
q_embed = get_embedding(question, engine=f'text-search-{size}-query-001')
|
||||
res = index.query(
|
||||
[q_embed], top_k=top_k,
|
||||
include_metadata=True, filter={
|
||||
'docs': {'$in': lib_meta}
|
||||
})
|
||||
|
||||
|
||||
cur_len = 0
|
||||
contexts = []
|
||||
sources = []
|
||||
|
||||
for row in res['results'][0]['matches']:
|
||||
text = mappings[row['id']]
|
||||
cur_len += row['metadata']['n_tokens'] + 4
|
||||
if cur_len < max_len:
|
||||
contexts.append(text)
|
||||
sources.append(row['metadata'])
|
||||
else:
|
||||
cur_len -= row['metadata']['n_tokens'] + 4
|
||||
if max_len - cur_len < 200:
|
||||
break
|
||||
return "\n\n###\n\n".join(contexts), sources
|
||||
|
||||
def answer_question(
|
||||
index,
|
||||
mappings,
|
||||
fine_tuned_qa_model="text-davinci-002",
|
||||
question="Am I allowed to publish model outputs to Twitter, without a human review?",
|
||||
instruction="Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext:\n{0}\n\n---\n\nQuestion: {1}\nAnswer:",
|
||||
max_len=3550,
|
||||
size="curie",
|
||||
top_k=5,
|
||||
debug=False,
|
||||
max_tokens=400,
|
||||
stop_sequence=None,
|
||||
domains=["huggingface", "tensorflow", "streamlit", "pytorch"],
|
||||
):
|
||||
"""
|
||||
Answer a question based on the most similar context from the dataframe texts
|
||||
"""
|
||||
context, sources = create_context(
|
||||
question,
|
||||
index,
|
||||
mappings,
|
||||
lib_meta=domains,
|
||||
max_len=max_len,
|
||||
size=size,
|
||||
top_k=top_k
|
||||
)
|
||||
if debug:
|
||||
print("Context:\n" + context)
|
||||
print("\n\n")
|
||||
try:
|
||||
# fine-tuned models requires model parameter, whereas other models require engine parameter
|
||||
model_param = (
|
||||
{"model": fine_tuned_qa_model}
|
||||
if ":" in fine_tuned_qa_model
|
||||
and fine_tuned_qa_model.split(":")[1].startswith("ft")
|
||||
else {"engine": fine_tuned_qa_model}
|
||||
)
|
||||
#print(instruction.format(context, question))
|
||||
response = openai.Completion.create(
|
||||
prompt=instruction.format(context, question),
|
||||
temperature=0,
|
||||
max_tokens=max_tokens,
|
||||
top_p=1,
|
||||
frequency_penalty=0,
|
||||
presence_penalty=0,
|
||||
stop=stop_sequence,
|
||||
**model_param,
|
||||
)
|
||||
return response["choices"][0]["text"].strip(), sources
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return ""
|
||||
|
||||
def search(index, text_map, query, style, top_k, lib_filters):
|
||||
if query != "":
|
||||
with st.spinner("Retrieving, please wait..."):
|
||||
answer, sources = answer_question(
|
||||
index, text_map,
|
||||
question=query,
|
||||
instruction=instructions[style],
|
||||
top_k=top_k
|
||||
)
|
||||
# lowercase relevant lib filters
|
||||
lib_meta = [lib.lower() for lib in lib_filters.keys() if lib_filters[lib]]
|
||||
lower_libs = [lib.lower() for lib in libraries]
|
||||
# display the answer
|
||||
st.write(answer)
|
||||
with st.expander("Sources"):
|
||||
for source in sources:
|
||||
st.write(f"""
|
||||
{source['docs']} > {source['category']} > [{source['thread']}]({source['href']})
|
||||
""")
|
||||
|
||||
st.markdown("""
|
||||
<link
|
||||
rel="stylesheet"
|
||||
href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700&display=swap"
|
||||
/>
|
||||
""", unsafe_allow_html=True)
|
||||
|
||||
#model_name = 'mpnet-discourse'
|
||||
|
||||
libraries = [
|
||||
"Streamlit",
|
||||
"HuggingFace",
|
||||
"PyTorch",
|
||||
"TensorFlow"
|
||||
]
|
||||
|
||||
with st.spinner("Connecting to OpenAI..."):
|
||||
retriever = init_openai()
|
||||
|
||||
with st.spinner("Connecting to Pinecone..."):
|
||||
index, dims, count = init_pinecone(INDEX)
|
||||
text_map = init_key_value()
|
||||
|
||||
def main():
|
||||
st.write("# ML Q&A")
|
||||
search = st.container()
|
||||
query = search.text_input('Ask a framework-specific question!', "")
|
||||
|
||||
with search.expander("Search Options"):
|
||||
style = st.radio(label='Style', options=[
|
||||
'Paragraph about a question', 'Conservative Q&A',
|
||||
'Bullet points', 'Summarize problems given a topic',
|
||||
'Extract key libraries and tools', 'Simple instructions',
|
||||
'Summarize'
|
||||
])
|
||||
# add section for filters
|
||||
st.write("""
|
||||
#### Metadata Filters
|
||||
|
||||
**Libraries**
|
||||
""")
|
||||
# create two cols
|
||||
cols = st.columns(2)
|
||||
# add filtering based on library
|
||||
lib_filters = {}
|
||||
for lib in libraries:
|
||||
i = len(lib_filters.keys()) % 2
|
||||
with cols[i]:
|
||||
lib_filters[lib] = st.checkbox(lib, value=True)
|
||||
st.write("---")
|
||||
top_k = st.slider(
|
||||
"top_k",
|
||||
min_value=1,
|
||||
max_value=20,
|
||||
value=5
|
||||
)
|
||||
|
||||
st.sidebar.write(f"""
|
||||
### Info
|
||||
|
||||
**Pinecone index name**: {INDEX}
|
||||
|
||||
**Pinecone index size**: {count}
|
||||
|
||||
**OpenAI embedding model**: *text-search-curie-query-001*
|
||||
|
||||
**Vector dimensionality**: {dims}
|
||||
|
||||
**OpenAI generation model**: *text-davinci-002*
|
||||
|
||||
---
|
||||
|
||||
### How it Works
|
||||
|
||||
The Q&A tool takes discussions and docs from some of the best Python ML
|
||||
libraries and collates their content into a natural language search and Q&A tool.
|
||||
|
||||
Ask questions like **"How do I use the gradient tape in tensorflow?"** or **"What is the difference
|
||||
between Tensorflow and PyTorch?"**, choose a answer style, and return relevant results!
|
||||
|
||||
The app is powered using OpenAI's embedding service with Pinecone's vector database. The whole process consists
|
||||
of *three* steps:
|
||||
|
||||
**1**. Questions are fed into OpenAI's embeddings service to generate a {dims}-dimensional query vector.
|
||||
|
||||
**2**. We use Pinecone to identify similar context vectors (previously encoded from Q&A pages).
|
||||
|
||||
**3**. Relevant pages are passed in a new question to OpenAI's generative model, returning our answer.
|
||||
|
||||
**How do I make something like this?**
|
||||
|
||||
It's easy! Learn how to [integrate OpenAI and Pinecone here](https://www.pinecone.io/docs/integrations/openai/)!
|
||||
|
||||
---
|
||||
|
||||
### Usage
|
||||
|
||||
If you'd like to restrict your search to a specific library (such as PyTorch or
|
||||
Streamlit) you can with the *Advanced Options* dropdown. The source of information
|
||||
can be switched between official docs and forum discussions too!
|
||||
|
||||
If you'd like OpenAI to consider more or less pages, try changing the `top_k` slider.
|
||||
|
||||
Want to see the original sources that GPT-3 is using to generate the answer? No problem, just click on the **Sources** box.
|
||||
""")
|
||||
|
||||
#if style.lower() == 'conservative q&a':
|
||||
# search.info("*Access search options above.*")
|
||||
|
||||
if search.button("Go!") or query != "":
|
||||
with st.spinner("Retrieving, please wait..."):
|
||||
# lowercase relevant lib filters
|
||||
lib_meta = [lib.lower() for lib in lib_filters.keys() if lib_filters[lib]]
|
||||
# ask the question
|
||||
answer, sources = answer_question(
|
||||
index, text_map,
|
||||
question=query,
|
||||
instruction=instructions[style.lower()],
|
||||
top_k=top_k,
|
||||
domains=lib_meta
|
||||
)
|
||||
# display the answer
|
||||
st.write(answer)
|
||||
with st.expander("Sources"):
|
||||
for source in sources:
|
||||
st.write(f"""
|
||||
{source['docs']} > {source['category']} > [{source['thread']}]({source['href']})
|
||||
""")
|
||||
Reference in New Issue
Block a user