mirror of
				https://github.com/pinecone-io/examples.git
				synced 2023-10-11 20:04:54 +03:00 
			
		
		
		
	other adjustments
This commit is contained in:
		| @@ -352,7 +352,7 @@ | ||||
|     "index_to_user = pd.Series(users)\n", | ||||
|     "\n", | ||||
|     "# create reverse mappings from user/item ID to index positions\n", | ||||
|     "user_to_index = pd.Series(data=index_to_user.index + 1, index=index_to_user.values)\n", | ||||
|     "user_to_index = pd.Series(data=index_to_user.index+1, index=index_to_user.values)\n", | ||||
|     "\n", | ||||
|     "# create zero-based index position <-> item/user ID mappings\n", | ||||
|     "index_to_item = pd.Series(items)\n", | ||||
| @@ -365,10 +365,10 @@ | ||||
|     "users_cols = data.user_id.astype(int)\n", | ||||
|     "\n", | ||||
|     "# Create a sparse matrix for our users and products containing number of purchases\n", | ||||
|     "sparse_product_user = sparse.csr_matrix((purchases, (products_rows, users_cols)), shape=(len(items) + 1, len(users) + 1))\n", | ||||
|     "sparse_product_user = sparse.csr_matrix((purchases, (products_rows, users_cols)), shape=(len(items)+1, len(users)+1))\n", | ||||
|     "sparse_product_user.data = np.nan_to_num(sparse_product_user.data, copy=False)\n", | ||||
|     "\n", | ||||
|     "sparse_user_product = sparse.csr_matrix((purchases, (users_cols, products_rows)), shape=(len(users) + 1, len(items) + 1))\n", | ||||
|     "sparse_user_product = sparse.csr_matrix((purchases, (users_cols, products_rows)), shape=(len(users)+1, len(items)+1))\n", | ||||
|     "sparse_user_product.data = np.nan_to_num(sparse_user_product.data, copy=False)" | ||||
|    ] | ||||
|   }, | ||||
| @@ -400,7 +400,7 @@ | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "!pip install --quiet -U implicit" | ||||
|     "!pip install --quiet -U implicit==0.6.0" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @@ -1070,11 +1070,16 @@ | ||||
|     "# Get all of the items\n", | ||||
|     "all_items = [title for title in products_lookup['product_name']]\n", | ||||
|     "\n", | ||||
|     "# clean non-ASCII characters from item names\n", | ||||
|     "def remove_non_ascii(input_string):\n", | ||||
|     "    return ''.join(i for i in input_string if ord(i) < 128)\n", | ||||
|     "all_items = [remove_non_ascii(title) for title in all_items]\n", | ||||
|     "\n", | ||||
|     "# Transform items into factors\n", | ||||
|     "items_factors = model.item_factors\n", | ||||
|     "\n", | ||||
|     "# Prepare item factors for upload\n", | ||||
|     "items_to_insert = list(zip(all_items, items_factors[1:].tolist()))\n", | ||||
|     "items_to_insert = list(zip(all_items, items_factors[1:].to_numpy().tolist()))\n", | ||||
|     "display(items_to_insert[:2])" | ||||
|    ] | ||||
|   }, | ||||
| @@ -1327,7 +1332,7 @@ | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "user_ids = [206210, 206211, 103593]\n", | ||||
|     "user_ids = [49687, 49688, 25010]\n", | ||||
|     "user_factors = model.user_factors[user_to_index[user_ids]]\n", | ||||
|     "\n", | ||||
|     "display(user_factors[1:])" | ||||
| @@ -1404,9 +1409,9 @@ | ||||
|     "print(\"Model recommendations\\n\")\n", | ||||
|     "\n", | ||||
|     "start_time = time.process_time()\n", | ||||
|     "recommendations0 = model.recommend(userid=user_ids[0], user_items=sparse_user_product)\n", | ||||
|     "recommendations1 = model.recommend(userid=user_ids[1], user_items=sparse_user_product)\n", | ||||
|     "recommendations2 = model.recommend(userid=user_ids[2], user_items=sparse_user_product)\n", | ||||
|     "recommendations0 = model.recommend(userid=user_ids[0], user_items=sparse_product_user[user_ids[0]])\n", | ||||
|     "recommendations1 = model.recommend(userid=user_ids[1], user_items=sparse_product_user[user_ids[1]])\n", | ||||
|     "recommendations2 = model.recommend(userid=user_ids[2], user_items=sparse_product_user[user_ids[2]])\n", | ||||
|     "print(\"Time needed for retrieving recommended products: \" + str(time.process_time() - start_time) + ' seconds.\\n')\n", | ||||
|     "\n", | ||||
|     "print('\\nRecommendations for person 0:')\n", | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 James Briggs
					James Briggs