mirror of
https://github.com/pyscript/pyscript.git
synced 2022-05-01 19:47:48 +03:00
Merge pull request #26 from anaconda/mattpap/numpy_canvas_example
Add a visualization with NumPy and canvas
This commit is contained in:
62
pyscriptjs/examples/fractals.py
Normal file
62
pyscriptjs/examples/fractals.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import numpy as np
|
||||
|
||||
def mandelbrot(width: int, height: int, *,
|
||||
x: float = -0.5, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array:
|
||||
"""
|
||||
From https://www.learnpythonwithrune.org/numpy-compute-mandelbrot-set-by-vectorization/.
|
||||
"""
|
||||
# To make navigation easier we calculate these values
|
||||
x_width, y_height = 1.5, 1.5*height/width
|
||||
x_from, x_to = x - x_width/zoom, x + x_width/zoom
|
||||
y_from, y_to = y - y_height/zoom, y + y_height/zoom
|
||||
|
||||
# Here the actual algorithm starts
|
||||
x = np.linspace(x_from, x_to, width).reshape((1, width))
|
||||
y = np.linspace(y_from, y_to, height).reshape((height, 1))
|
||||
c = x + 1j*y
|
||||
|
||||
# Initialize z to all zero
|
||||
z = np.zeros(c.shape, dtype=np.complex128)
|
||||
|
||||
# To keep track in which iteration the point diverged
|
||||
div_time = np.zeros(z.shape, dtype=int)
|
||||
|
||||
# To keep track on which points did not converge so far
|
||||
m = np.full(c.shape, True, dtype=bool)
|
||||
for i in range(max_iterations):
|
||||
z[m] = z[m]**2 + c[m]
|
||||
diverged = np.greater(np.abs(z), 2, out=np.full(c.shape, False), where=m) # Find diverging
|
||||
div_time[diverged] = i # set the value of the diverged iteration number
|
||||
m[np.abs(z) > 2] = False # to remember which have diverged
|
||||
|
||||
return div_time
|
||||
|
||||
def julia(width: int, height: int, *,
|
||||
c: complex = -0.4 + 0.6j, x: float = 0, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array:
|
||||
"""
|
||||
From https://www.learnpythonwithrune.org/numpy-calculate-the-julia-set-with-vectorization/.
|
||||
"""
|
||||
# To make navigation easier we calculate these values
|
||||
x_width, y_height = 1.5, 1.5*height/width
|
||||
x_from, x_to = x - x_width/zoom, x + x_width/zoom
|
||||
y_from, y_to = y - y_height/zoom, y + y_height/zoom
|
||||
|
||||
# Here the actual algorithm starts
|
||||
x = np.linspace(x_from, x_to, width).reshape((1, width))
|
||||
y = np.linspace(y_from, y_to, height).reshape((height, 1))
|
||||
z = x + 1j*y
|
||||
|
||||
# Initialize z to all zero
|
||||
c = np.full(z.shape, c)
|
||||
|
||||
# To keep track in which iteration the point diverged
|
||||
div_time = np.zeros(z.shape, dtype=int)
|
||||
|
||||
# To keep track on which points did not converge so far
|
||||
m = np.full(c.shape, True, dtype=bool)
|
||||
for i in range(max_iterations):
|
||||
z[m] = z[m]**2 + c[m]
|
||||
m[np.abs(z) > 2] = False
|
||||
div_time[m] = i
|
||||
|
||||
return div_time
|
||||
@@ -45,6 +45,8 @@
|
||||
<h2 class="text-2xl font-bold text-blue-600"><a href="./d3.html" target=”_blank”>Simple d3 visualization</a></h2>
|
||||
<p>Minimal d3 demo demonstrating how to create a visualization</p>
|
||||
|
||||
<h2 class="text-2xl font-bold text-blue-600"><a href="./numpy_canvas_fractals.html" target=”_blank”>Fractals with NumPy and canvas</a></h2>
|
||||
<p>Visualization of Mandelbrot and Julia sets with NumPy and HTML5 canvas</p>
|
||||
|
||||
<h2 class="text-2xl font-bold text-blue-600"><a href="./repl.html" target=”_blank”>REPL</a></h2>
|
||||
<p>A Python REPL (Read Eval Print Loop). </p>
|
||||
|
||||
135
pyscriptjs/examples/numpy_canvas_fractals.html
Normal file
135
pyscriptjs/examples/numpy_canvas_fractals.html
Normal file
@@ -0,0 +1,135 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Visualization of Mandelbrot and Julia sets with NumPy and HTML5 canvas</title>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<link rel="stylesheet" href="../build/pyscript.css" />
|
||||
<script defer src="../build/pyscript.js"></script>
|
||||
|
||||
<style>
|
||||
.loading {
|
||||
display: inline-block;
|
||||
width: 50px;
|
||||
height: 50px;
|
||||
border: 3px solid rgba(255, 255, 255, 0.3);
|
||||
border-radius: 50%;
|
||||
border-top-color: black;
|
||||
animation: spin 1s ease-in-out infinite;
|
||||
}
|
||||
|
||||
@keyframes spin {
|
||||
to {
|
||||
transform: rotate(360deg);
|
||||
}
|
||||
}
|
||||
</style>
|
||||
|
||||
</head>
|
||||
<body>
|
||||
<b>
|
||||
</b>
|
||||
<div style="display: flex; flex-direction: row; gap: 1em">
|
||||
<div>
|
||||
<div style="text-align: center">Mandelbrot set</div>
|
||||
<div id="mandelbrot" style="width: 600px; height: 600px">
|
||||
<div class="loading"></div>
|
||||
</div>
|
||||
</div>
|
||||
<div>
|
||||
<div style="text-align: center">Julia set</div>
|
||||
<div id="julia" style="width: 600px; height: 600px">
|
||||
<div class="loading"></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<py-env>
|
||||
- numpy
|
||||
- paths:
|
||||
- /palettes.py
|
||||
- /fractals.py
|
||||
</py-env>
|
||||
|
||||
<py-script>
|
||||
from pyodide import to_js
|
||||
|
||||
import numpy as np
|
||||
|
||||
from palettes import Magma256
|
||||
from fractals import mandelbrot, julia
|
||||
|
||||
from js import (
|
||||
console,
|
||||
document,
|
||||
devicePixelRatio,
|
||||
ImageData,
|
||||
Uint8ClampedArray,
|
||||
CanvasRenderingContext2D as Context2d,
|
||||
)
|
||||
|
||||
def create_canvas(width: int, height: int, target: str) -> Context2d:
|
||||
pixel_ratio = devicePixelRatio
|
||||
|
||||
canvas = document.createElement("canvas")
|
||||
ctx = canvas.getContext("2d")
|
||||
|
||||
canvas.style.width = f"{width}px"
|
||||
canvas.style.height = f"{height}px"
|
||||
|
||||
canvas.width = width*pixel_ratio
|
||||
canvas.height = height*pixel_ratio
|
||||
|
||||
ctx.scale(pixel_ratio, pixel_ratio)
|
||||
ctx.translate(0.5, 0.5)
|
||||
|
||||
ctx.clearRect(0, 0, width, height)
|
||||
|
||||
el = document.querySelector(target)
|
||||
el.replaceChildren(canvas)
|
||||
|
||||
return ctx
|
||||
|
||||
def color_map(array: np.array, palette: np.array) -> np.array:
|
||||
size, _ = palette.shape
|
||||
index = (array/array.max()*(size - 1)).round().astype("uint8")
|
||||
|
||||
width, height = array.shape
|
||||
image = np.full((width, height, 4), 0xff, dtype=np.uint8)
|
||||
image[:, :, :3] = palette[index]
|
||||
|
||||
return image
|
||||
|
||||
def draw_image(ctx: Context2d, image: np.array) -> None:
|
||||
data = Uint8ClampedArray.new(to_js(image.tobytes()))
|
||||
width, height, _ = image.shape
|
||||
image_data = ImageData.new(data, width, height)
|
||||
ctx.putImageData(image_data, 0, 0)
|
||||
|
||||
def draw_mandelbrot(width: int, height: int) -> None:
|
||||
ctx = create_canvas(width, height, "#mandelbrot")
|
||||
|
||||
console.log("Computing Mandelbrot set ...")
|
||||
console.time("mandelbrot")
|
||||
array = mandelbrot(width, height)
|
||||
console.timeEnd("mandelbrot")
|
||||
|
||||
image = color_map(array, Magma256)
|
||||
draw_image(ctx, image)
|
||||
|
||||
def draw_julia(width: int, height: int) -> None:
|
||||
ctx = create_canvas(width, height, "#julia")
|
||||
|
||||
console.log("Computing Julia set ...")
|
||||
console.time("julia")
|
||||
array = julia(width, height)
|
||||
console.timeEnd("julia")
|
||||
|
||||
image = color_map(array, Magma256)
|
||||
draw_image(ctx, image)
|
||||
|
||||
draw_mandelbrot(600, 600)
|
||||
draw_julia(600, 600)
|
||||
</py-script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
68
pyscriptjs/examples/palettes.py
Normal file
68
pyscriptjs/examples/palettes.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import numpy as np
|
||||
|
||||
Magma256 = np.array([
|
||||
[0x00, 0x00, 0x03], [0x00, 0x00, 0x04], [0x00, 0x00, 0x06], [0x01, 0x00, 0x07],
|
||||
[0x01, 0x01, 0x09], [0x01, 0x01, 0x0b], [0x02, 0x02, 0x0d], [0x02, 0x02, 0x0f],
|
||||
[0x03, 0x03, 0x11], [0x04, 0x03, 0x13], [0x04, 0x04, 0x15], [0x05, 0x04, 0x17],
|
||||
[0x06, 0x05, 0x19], [0x07, 0x05, 0x1b], [0x08, 0x06, 0x1d], [0x09, 0x07, 0x1f],
|
||||
[0x0a, 0x07, 0x22], [0x0b, 0x08, 0x24], [0x0c, 0x09, 0x26], [0x0d, 0x0a, 0x28],
|
||||
[0x0e, 0x0a, 0x2a], [0x0f, 0x0b, 0x2c], [0x10, 0x0c, 0x2f], [0x11, 0x0c, 0x31],
|
||||
[0x12, 0x0d, 0x33], [0x14, 0x0d, 0x35], [0x15, 0x0e, 0x38], [0x16, 0x0e, 0x3a],
|
||||
[0x17, 0x0f, 0x3c], [0x18, 0x0f, 0x3f], [0x1a, 0x10, 0x41], [0x1b, 0x10, 0x44],
|
||||
[0x1c, 0x10, 0x46], [0x1e, 0x10, 0x49], [0x1f, 0x11, 0x4b], [0x20, 0x11, 0x4d],
|
||||
[0x22, 0x11, 0x50], [0x23, 0x11, 0x52], [0x25, 0x11, 0x55], [0x26, 0x11, 0x57],
|
||||
[0x28, 0x11, 0x59], [0x2a, 0x11, 0x5c], [0x2b, 0x11, 0x5e], [0x2d, 0x10, 0x60],
|
||||
[0x2f, 0x10, 0x62], [0x30, 0x10, 0x65], [0x32, 0x10, 0x67], [0x34, 0x10, 0x68],
|
||||
[0x35, 0x0f, 0x6a], [0x37, 0x0f, 0x6c], [0x39, 0x0f, 0x6e], [0x3b, 0x0f, 0x6f],
|
||||
[0x3c, 0x0f, 0x71], [0x3e, 0x0f, 0x72], [0x40, 0x0f, 0x73], [0x42, 0x0f, 0x74],
|
||||
[0x43, 0x0f, 0x75], [0x45, 0x0f, 0x76], [0x47, 0x0f, 0x77], [0x48, 0x10, 0x78],
|
||||
[0x4a, 0x10, 0x79], [0x4b, 0x10, 0x79], [0x4d, 0x11, 0x7a], [0x4f, 0x11, 0x7b],
|
||||
[0x50, 0x12, 0x7b], [0x52, 0x12, 0x7c], [0x53, 0x13, 0x7c], [0x55, 0x13, 0x7d],
|
||||
[0x57, 0x14, 0x7d], [0x58, 0x15, 0x7e], [0x5a, 0x15, 0x7e], [0x5b, 0x16, 0x7e],
|
||||
[0x5d, 0x17, 0x7e], [0x5e, 0x17, 0x7f], [0x60, 0x18, 0x7f], [0x61, 0x18, 0x7f],
|
||||
[0x63, 0x19, 0x7f], [0x65, 0x1a, 0x80], [0x66, 0x1a, 0x80], [0x68, 0x1b, 0x80],
|
||||
[0x69, 0x1c, 0x80], [0x6b, 0x1c, 0x80], [0x6c, 0x1d, 0x80], [0x6e, 0x1e, 0x81],
|
||||
[0x6f, 0x1e, 0x81], [0x71, 0x1f, 0x81], [0x73, 0x1f, 0x81], [0x74, 0x20, 0x81],
|
||||
[0x76, 0x21, 0x81], [0x77, 0x21, 0x81], [0x79, 0x22, 0x81], [0x7a, 0x22, 0x81],
|
||||
[0x7c, 0x23, 0x81], [0x7e, 0x24, 0x81], [0x7f, 0x24, 0x81], [0x81, 0x25, 0x81],
|
||||
[0x82, 0x25, 0x81], [0x84, 0x26, 0x81], [0x85, 0x26, 0x81], [0x87, 0x27, 0x81],
|
||||
[0x89, 0x28, 0x81], [0x8a, 0x28, 0x81], [0x8c, 0x29, 0x80], [0x8d, 0x29, 0x80],
|
||||
[0x8f, 0x2a, 0x80], [0x91, 0x2a, 0x80], [0x92, 0x2b, 0x80], [0x94, 0x2b, 0x80],
|
||||
[0x95, 0x2c, 0x80], [0x97, 0x2c, 0x7f], [0x99, 0x2d, 0x7f], [0x9a, 0x2d, 0x7f],
|
||||
[0x9c, 0x2e, 0x7f], [0x9e, 0x2e, 0x7e], [0x9f, 0x2f, 0x7e], [0xa1, 0x2f, 0x7e],
|
||||
[0xa3, 0x30, 0x7e], [0xa4, 0x30, 0x7d], [0xa6, 0x31, 0x7d], [0xa7, 0x31, 0x7d],
|
||||
[0xa9, 0x32, 0x7c], [0xab, 0x33, 0x7c], [0xac, 0x33, 0x7b], [0xae, 0x34, 0x7b],
|
||||
[0xb0, 0x34, 0x7b], [0xb1, 0x35, 0x7a], [0xb3, 0x35, 0x7a], [0xb5, 0x36, 0x79],
|
||||
[0xb6, 0x36, 0x79], [0xb8, 0x37, 0x78], [0xb9, 0x37, 0x78], [0xbb, 0x38, 0x77],
|
||||
[0xbd, 0x39, 0x77], [0xbe, 0x39, 0x76], [0xc0, 0x3a, 0x75], [0xc2, 0x3a, 0x75],
|
||||
[0xc3, 0x3b, 0x74], [0xc5, 0x3c, 0x74], [0xc6, 0x3c, 0x73], [0xc8, 0x3d, 0x72],
|
||||
[0xca, 0x3e, 0x72], [0xcb, 0x3e, 0x71], [0xcd, 0x3f, 0x70], [0xce, 0x40, 0x70],
|
||||
[0xd0, 0x41, 0x6f], [0xd1, 0x42, 0x6e], [0xd3, 0x42, 0x6d], [0xd4, 0x43, 0x6d],
|
||||
[0xd6, 0x44, 0x6c], [0xd7, 0x45, 0x6b], [0xd9, 0x46, 0x6a], [0xda, 0x47, 0x69],
|
||||
[0xdc, 0x48, 0x69], [0xdd, 0x49, 0x68], [0xde, 0x4a, 0x67], [0xe0, 0x4b, 0x66],
|
||||
[0xe1, 0x4c, 0x66], [0xe2, 0x4d, 0x65], [0xe4, 0x4e, 0x64], [0xe5, 0x50, 0x63],
|
||||
[0xe6, 0x51, 0x62], [0xe7, 0x52, 0x62], [0xe8, 0x54, 0x61], [0xea, 0x55, 0x60],
|
||||
[0xeb, 0x56, 0x60], [0xec, 0x58, 0x5f], [0xed, 0x59, 0x5f], [0xee, 0x5b, 0x5e],
|
||||
[0xee, 0x5d, 0x5d], [0xef, 0x5e, 0x5d], [0xf0, 0x60, 0x5d], [0xf1, 0x61, 0x5c],
|
||||
[0xf2, 0x63, 0x5c], [0xf3, 0x65, 0x5c], [0xf3, 0x67, 0x5b], [0xf4, 0x68, 0x5b],
|
||||
[0xf5, 0x6a, 0x5b], [0xf5, 0x6c, 0x5b], [0xf6, 0x6e, 0x5b], [0xf6, 0x70, 0x5b],
|
||||
[0xf7, 0x71, 0x5b], [0xf7, 0x73, 0x5c], [0xf8, 0x75, 0x5c], [0xf8, 0x77, 0x5c],
|
||||
[0xf9, 0x79, 0x5c], [0xf9, 0x7b, 0x5d], [0xf9, 0x7d, 0x5d], [0xfa, 0x7f, 0x5e],
|
||||
[0xfa, 0x80, 0x5e], [0xfa, 0x82, 0x5f], [0xfb, 0x84, 0x60], [0xfb, 0x86, 0x60],
|
||||
[0xfb, 0x88, 0x61], [0xfb, 0x8a, 0x62], [0xfc, 0x8c, 0x63], [0xfc, 0x8e, 0x63],
|
||||
[0xfc, 0x90, 0x64], [0xfc, 0x92, 0x65], [0xfc, 0x93, 0x66], [0xfd, 0x95, 0x67],
|
||||
[0xfd, 0x97, 0x68], [0xfd, 0x99, 0x69], [0xfd, 0x9b, 0x6a], [0xfd, 0x9d, 0x6b],
|
||||
[0xfd, 0x9f, 0x6c], [0xfd, 0xa1, 0x6e], [0xfd, 0xa2, 0x6f], [0xfd, 0xa4, 0x70],
|
||||
[0xfe, 0xa6, 0x71], [0xfe, 0xa8, 0x73], [0xfe, 0xaa, 0x74], [0xfe, 0xac, 0x75],
|
||||
[0xfe, 0xae, 0x76], [0xfe, 0xaf, 0x78], [0xfe, 0xb1, 0x79], [0xfe, 0xb3, 0x7b],
|
||||
[0xfe, 0xb5, 0x7c], [0xfe, 0xb7, 0x7d], [0xfe, 0xb9, 0x7f], [0xfe, 0xbb, 0x80],
|
||||
[0xfe, 0xbc, 0x82], [0xfe, 0xbe, 0x83], [0xfe, 0xc0, 0x85], [0xfe, 0xc2, 0x86],
|
||||
[0xfe, 0xc4, 0x88], [0xfe, 0xc6, 0x89], [0xfe, 0xc7, 0x8b], [0xfe, 0xc9, 0x8d],
|
||||
[0xfe, 0xcb, 0x8e], [0xfd, 0xcd, 0x90], [0xfd, 0xcf, 0x92], [0xfd, 0xd1, 0x93],
|
||||
[0xfd, 0xd2, 0x95], [0xfd, 0xd4, 0x97], [0xfd, 0xd6, 0x98], [0xfd, 0xd8, 0x9a],
|
||||
[0xfd, 0xda, 0x9c], [0xfd, 0xdc, 0x9d], [0xfd, 0xdd, 0x9f], [0xfd, 0xdf, 0xa1],
|
||||
[0xfd, 0xe1, 0xa3], [0xfc, 0xe3, 0xa5], [0xfc, 0xe5, 0xa6], [0xfc, 0xe6, 0xa8],
|
||||
[0xfc, 0xe8, 0xaa], [0xfc, 0xea, 0xac], [0xfc, 0xec, 0xae], [0xfc, 0xee, 0xb0],
|
||||
[0xfc, 0xf0, 0xb1], [0xfc, 0xf1, 0xb3], [0xfc, 0xf3, 0xb5], [0xfc, 0xf5, 0xb7],
|
||||
[0xfb, 0xf7, 0xb9], [0xfb, 0xf9, 0xbb], [0xfb, 0xfa, 0xbd], [0xfb, 0xfc, 0xbf],
|
||||
], dtype="uint8")
|
||||
Reference in New Issue
Block a user