diff --git a/pyscriptjs/public/bokeh_interactive.html b/pyscriptjs/public/bokeh_interactive.html new file mode 100644 index 0000000..1cb1b8b --- /dev/null +++ b/pyscriptjs/public/bokeh_interactive.html @@ -0,0 +1,98 @@ + + Bokeh Example + + + + + + + + + + + + + + + +- bokeh +- numpy + +

Bokeh Example

+
+ + +import asyncio +import json +import pyodide + +from js import Bokeh, console, JSON + +from bokeh import __version__ +from bokeh.document import Document +from bokeh.embed.util import OutputDocumentFor, standalone_docs_json +from bokeh.models import Slider, Div +from bokeh.layouts import Row +from bokeh.protocol.messages.patch_doc import process_document_events + +# create a new plot with default tools, using figure +p = Slider(start=0.1, end=10, value=1, step=.1, title="Amplitude") +div = Div(text=f'Amplitude is: {p.value}') + +def callback(attr, old, new): + div.text = f'Amplitude is: {new}' + +p.on_change('value', callback) + +row = Row(children=[p, div]) + +print("about to embed") + +def doc_json(model, target): + with OutputDocumentFor([model]) as doc: + doc.title = "" + docs_json = standalone_docs_json([model]) + + doc_json = list(docs_json.values())[0] + root_id = doc_json['roots']['root_ids'][0] + + return doc, json.dumps(dict( + target_id = target, + root_id = root_id, + doc = doc_json, + version = __version__, + )) + +def _link_docs(pydoc, jsdoc): + def jssync(event): + if (event.setter_id is not None): + return + events = [event] + json_patch = jsdoc.create_json_patch_string(pyodide.to_js(events)) + pydoc.apply_json_patch(json.loads(json_patch)) + + jsdoc.on_change(pyodide.create_proxy(jssync), pyodide.to_js(False)) + + def pysync(event): + json_patch, buffers = process_document_events([event], use_buffers=True) + buffer_map = {} + for (ref, buffer) in buffers: + buffer_map[ref['id']] = buffer + jsdoc.apply_json_patch(JSON.parse(json_patch), pyodide.to_js(buffer_map), setter_id='js') + + pydoc.on_change(pysync) + +async def show(plot, target): + pydoc, model_json = doc_json(plot, target) + views = await Bokeh.embed.embed_item(JSON.parse(model_json)) + print("Done embedding...") + jsdoc = views[0].model.document + _link_docs(pydoc, jsdoc) + +await show(row, 'myplot') + + + + diff --git a/pyscriptjs/public/panel.html b/pyscriptjs/public/panel.html new file mode 100644 index 0000000..6319144 --- /dev/null +++ b/pyscriptjs/public/panel.html @@ -0,0 +1,39 @@ + + + Panel Example + + + + + + + + + + + + + - bokeh + - numpy + +

Panel Example

+
+ +import asyncio +import micropip + +await micropip.install(['panel==0.13.0rc9']) + +import panel as pn + +slider = pn.widgets.FloatSlider(start=0, end=10, name='Amplitude') + +def callback(new): + return f'Amplitude is: {new}' + +row = pn.Row(slider, pn.bind(callback, slider)) + +await pn.io.pyodide.show(row, 'myplot') + + + diff --git a/pyscriptjs/public/panel_kmeans.html b/pyscriptjs/public/panel_kmeans.html new file mode 100644 index 0000000..ee8e902 --- /dev/null +++ b/pyscriptjs/public/panel_kmeans.html @@ -0,0 +1,157 @@ + + + + + Pyscript/Panel KMeans Demo + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - bokeh + - numpy + - pandas + - scikit-learn + + +
+ + +
+ +
+
+
+
+
+
+
+ +import asyncio +import micropip + +from io import StringIO +from js import fetch + +await micropip.install(['panel==0.13.0rc9', 'altair']) + +import altair as alt +import panel as pn +import pandas as pd + +from panel.io.pyodide import show +from sklearn.cluster import KMeans + +pn.config.sizing_mode = 'stretch_width' + +data = await fetch('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') +penguins = pd.read_csv(StringIO(await data.text())).dropna() +cols = list(penguins.columns)[2:6] + +x = pn.widgets.Select(name='x', options=cols, value='bill_depth_mm') +y = pn.widgets.Select(name='y', options=cols, value='bill_length_mm') +n_clusters = pn.widgets.IntSlider(name='n_clusters', start=1, end=5, value=3) + +@pn.depends(x.param.value, y.param.value, n_clusters.param.value) +def get_clusters(x, y, n_clusters): + kmeans = KMeans(n_clusters=n_clusters) + est = kmeans.fit(penguins[cols].values) + df = penguins.copy() + df['labels'] = est.labels_.astype('str') + centers = df.groupby('labels').mean() + table.value = df + return ( + alt.Chart(df) + .mark_point(size=100) + .encode( + x=alt.X(x, scale=alt.Scale(zero=False)), + y=alt.Y(y, scale=alt.Scale(zero=False)), + shape='labels', + color='species' + ).properties(width=800) + + alt.Chart(centers) + .mark_point(size=200, shape='cross', color='black') + .encode(x=x+':Q', y=y+':Q') +) + +table = pn.widgets.Tabulator(penguins, pagination='remote', page_size=10) + +intro = """ +This app provides an example of **building a simple dashboard using +Panel**.\n\nIt demonstrates how to take the output of **k-means +clustering on the Penguins dataset** using scikit-learn, parameterizing +the number of clusters and the variables to plot.\n\nThe entire +clustering and plotting pipeline is expressed as a **single reactive +function** that responsively returns an updated plot when one of the +widgets changes.\n\n The **`x` marks the center** of the cluster. +""" + +await show(x, 'x-widget') +await show(y, 'y-widget') +await show(n_clusters, 'n-widget') +await show(intro, 'intro') +await show(get_clusters, 'cluster-plot') +await show(table, 'table') + + + +