diff --git a/pyscriptjs/examples/index.html b/pyscriptjs/examples/index.html index 02d1eaa..6710acf 100644 --- a/pyscriptjs/examples/index.html +++ b/pyscriptjs/examples/index.html @@ -45,6 +45,8 @@

Simple d3 visualization

Minimal d3 demo demonstrating how to create a visualization

+

Fractals with NumPy and canvas

+

Visualization of Mandelbrot and Julia sets with NumPy and HTML5 canvas

REPL

A Python REPL (Read Eval Print Loop).

diff --git a/pyscriptjs/examples/numpy_canvas_fractals.html b/pyscriptjs/examples/numpy_canvas_fractals.html new file mode 100644 index 0000000..c48653f --- /dev/null +++ b/pyscriptjs/examples/numpy_canvas_fractals.html @@ -0,0 +1,236 @@ + + + Visualization of Mandelbrot and Julia sets with NumPy and HTML5 canvas + + + + + + + + + + + +
+
+
Mandelbrot set
+
+
+
+
+
+
Julia set
+
+
+
+
+
+ + +- numpy + + + +from pyodide import to_js + +import numpy as np + +from js import ( + console, + document, + devicePixelRatio, + ImageData, + Uint8ClampedArray, + CanvasRenderingContext2D as Context2d, +) + +Magma256 = np.array([ + [0x00, 0x00, 0x03], [0x00, 0x00, 0x04], [0x00, 0x00, 0x06], [0x01, 0x00, 0x07], [0x01, 0x01, 0x09], [0x01, 0x01, 0x0b], + [0x02, 0x02, 0x0d], [0x02, 0x02, 0x0f], [0x03, 0x03, 0x11], [0x04, 0x03, 0x13], [0x04, 0x04, 0x15], [0x05, 0x04, 0x17], + [0x06, 0x05, 0x19], [0x07, 0x05, 0x1b], [0x08, 0x06, 0x1d], [0x09, 0x07, 0x1f], [0x0a, 0x07, 0x22], [0x0b, 0x08, 0x24], + [0x0c, 0x09, 0x26], [0x0d, 0x0a, 0x28], [0x0e, 0x0a, 0x2a], [0x0f, 0x0b, 0x2c], [0x10, 0x0c, 0x2f], [0x11, 0x0c, 0x31], + [0x12, 0x0d, 0x33], [0x14, 0x0d, 0x35], [0x15, 0x0e, 0x38], [0x16, 0x0e, 0x3a], [0x17, 0x0f, 0x3c], [0x18, 0x0f, 0x3f], + [0x1a, 0x10, 0x41], [0x1b, 0x10, 0x44], [0x1c, 0x10, 0x46], [0x1e, 0x10, 0x49], [0x1f, 0x11, 0x4b], [0x20, 0x11, 0x4d], + [0x22, 0x11, 0x50], [0x23, 0x11, 0x52], [0x25, 0x11, 0x55], [0x26, 0x11, 0x57], [0x28, 0x11, 0x59], [0x2a, 0x11, 0x5c], + [0x2b, 0x11, 0x5e], [0x2d, 0x10, 0x60], [0x2f, 0x10, 0x62], [0x30, 0x10, 0x65], [0x32, 0x10, 0x67], [0x34, 0x10, 0x68], + [0x35, 0x0f, 0x6a], [0x37, 0x0f, 0x6c], [0x39, 0x0f, 0x6e], [0x3b, 0x0f, 0x6f], [0x3c, 0x0f, 0x71], [0x3e, 0x0f, 0x72], + [0x40, 0x0f, 0x73], [0x42, 0x0f, 0x74], [0x43, 0x0f, 0x75], [0x45, 0x0f, 0x76], [0x47, 0x0f, 0x77], [0x48, 0x10, 0x78], + [0x4a, 0x10, 0x79], [0x4b, 0x10, 0x79], [0x4d, 0x11, 0x7a], [0x4f, 0x11, 0x7b], [0x50, 0x12, 0x7b], [0x52, 0x12, 0x7c], + [0x53, 0x13, 0x7c], [0x55, 0x13, 0x7d], [0x57, 0x14, 0x7d], [0x58, 0x15, 0x7e], [0x5a, 0x15, 0x7e], [0x5b, 0x16, 0x7e], + [0x5d, 0x17, 0x7e], [0x5e, 0x17, 0x7f], [0x60, 0x18, 0x7f], [0x61, 0x18, 0x7f], [0x63, 0x19, 0x7f], [0x65, 0x1a, 0x80], + [0x66, 0x1a, 0x80], [0x68, 0x1b, 0x80], [0x69, 0x1c, 0x80], [0x6b, 0x1c, 0x80], [0x6c, 0x1d, 0x80], [0x6e, 0x1e, 0x81], + [0x6f, 0x1e, 0x81], [0x71, 0x1f, 0x81], [0x73, 0x1f, 0x81], [0x74, 0x20, 0x81], [0x76, 0x21, 0x81], [0x77, 0x21, 0x81], + [0x79, 0x22, 0x81], [0x7a, 0x22, 0x81], [0x7c, 0x23, 0x81], [0x7e, 0x24, 0x81], [0x7f, 0x24, 0x81], [0x81, 0x25, 0x81], + [0x82, 0x25, 0x81], [0x84, 0x26, 0x81], [0x85, 0x26, 0x81], [0x87, 0x27, 0x81], [0x89, 0x28, 0x81], [0x8a, 0x28, 0x81], + [0x8c, 0x29, 0x80], [0x8d, 0x29, 0x80], [0x8f, 0x2a, 0x80], [0x91, 0x2a, 0x80], [0x92, 0x2b, 0x80], [0x94, 0x2b, 0x80], + [0x95, 0x2c, 0x80], [0x97, 0x2c, 0x7f], [0x99, 0x2d, 0x7f], [0x9a, 0x2d, 0x7f], [0x9c, 0x2e, 0x7f], [0x9e, 0x2e, 0x7e], + [0x9f, 0x2f, 0x7e], [0xa1, 0x2f, 0x7e], [0xa3, 0x30, 0x7e], [0xa4, 0x30, 0x7d], [0xa6, 0x31, 0x7d], [0xa7, 0x31, 0x7d], + [0xa9, 0x32, 0x7c], [0xab, 0x33, 0x7c], [0xac, 0x33, 0x7b], [0xae, 0x34, 0x7b], [0xb0, 0x34, 0x7b], [0xb1, 0x35, 0x7a], + [0xb3, 0x35, 0x7a], [0xb5, 0x36, 0x79], [0xb6, 0x36, 0x79], [0xb8, 0x37, 0x78], [0xb9, 0x37, 0x78], [0xbb, 0x38, 0x77], + [0xbd, 0x39, 0x77], [0xbe, 0x39, 0x76], [0xc0, 0x3a, 0x75], [0xc2, 0x3a, 0x75], [0xc3, 0x3b, 0x74], [0xc5, 0x3c, 0x74], + [0xc6, 0x3c, 0x73], [0xc8, 0x3d, 0x72], [0xca, 0x3e, 0x72], [0xcb, 0x3e, 0x71], [0xcd, 0x3f, 0x70], [0xce, 0x40, 0x70], + [0xd0, 0x41, 0x6f], [0xd1, 0x42, 0x6e], [0xd3, 0x42, 0x6d], [0xd4, 0x43, 0x6d], [0xd6, 0x44, 0x6c], [0xd7, 0x45, 0x6b], + [0xd9, 0x46, 0x6a], [0xda, 0x47, 0x69], [0xdc, 0x48, 0x69], [0xdd, 0x49, 0x68], [0xde, 0x4a, 0x67], [0xe0, 0x4b, 0x66], + [0xe1, 0x4c, 0x66], [0xe2, 0x4d, 0x65], [0xe4, 0x4e, 0x64], [0xe5, 0x50, 0x63], [0xe6, 0x51, 0x62], [0xe7, 0x52, 0x62], + [0xe8, 0x54, 0x61], [0xea, 0x55, 0x60], [0xeb, 0x56, 0x60], [0xec, 0x58, 0x5f], [0xed, 0x59, 0x5f], [0xee, 0x5b, 0x5e], + [0xee, 0x5d, 0x5d], [0xef, 0x5e, 0x5d], [0xf0, 0x60, 0x5d], [0xf1, 0x61, 0x5c], [0xf2, 0x63, 0x5c], [0xf3, 0x65, 0x5c], + [0xf3, 0x67, 0x5b], [0xf4, 0x68, 0x5b], [0xf5, 0x6a, 0x5b], [0xf5, 0x6c, 0x5b], [0xf6, 0x6e, 0x5b], [0xf6, 0x70, 0x5b], + [0xf7, 0x71, 0x5b], [0xf7, 0x73, 0x5c], [0xf8, 0x75, 0x5c], [0xf8, 0x77, 0x5c], [0xf9, 0x79, 0x5c], [0xf9, 0x7b, 0x5d], + [0xf9, 0x7d, 0x5d], [0xfa, 0x7f, 0x5e], [0xfa, 0x80, 0x5e], [0xfa, 0x82, 0x5f], [0xfb, 0x84, 0x60], [0xfb, 0x86, 0x60], + [0xfb, 0x88, 0x61], [0xfb, 0x8a, 0x62], [0xfc, 0x8c, 0x63], [0xfc, 0x8e, 0x63], [0xfc, 0x90, 0x64], [0xfc, 0x92, 0x65], + [0xfc, 0x93, 0x66], [0xfd, 0x95, 0x67], [0xfd, 0x97, 0x68], [0xfd, 0x99, 0x69], [0xfd, 0x9b, 0x6a], [0xfd, 0x9d, 0x6b], + [0xfd, 0x9f, 0x6c], [0xfd, 0xa1, 0x6e], [0xfd, 0xa2, 0x6f], [0xfd, 0xa4, 0x70], [0xfe, 0xa6, 0x71], [0xfe, 0xa8, 0x73], + [0xfe, 0xaa, 0x74], [0xfe, 0xac, 0x75], [0xfe, 0xae, 0x76], [0xfe, 0xaf, 0x78], [0xfe, 0xb1, 0x79], [0xfe, 0xb3, 0x7b], + [0xfe, 0xb5, 0x7c], [0xfe, 0xb7, 0x7d], [0xfe, 0xb9, 0x7f], [0xfe, 0xbb, 0x80], [0xfe, 0xbc, 0x82], [0xfe, 0xbe, 0x83], + [0xfe, 0xc0, 0x85], [0xfe, 0xc2, 0x86], [0xfe, 0xc4, 0x88], [0xfe, 0xc6, 0x89], [0xfe, 0xc7, 0x8b], [0xfe, 0xc9, 0x8d], + [0xfe, 0xcb, 0x8e], [0xfd, 0xcd, 0x90], [0xfd, 0xcf, 0x92], [0xfd, 0xd1, 0x93], [0xfd, 0xd2, 0x95], [0xfd, 0xd4, 0x97], + [0xfd, 0xd6, 0x98], [0xfd, 0xd8, 0x9a], [0xfd, 0xda, 0x9c], [0xfd, 0xdc, 0x9d], [0xfd, 0xdd, 0x9f], [0xfd, 0xdf, 0xa1], + [0xfd, 0xe1, 0xa3], [0xfc, 0xe3, 0xa5], [0xfc, 0xe5, 0xa6], [0xfc, 0xe6, 0xa8], [0xfc, 0xe8, 0xaa], [0xfc, 0xea, 0xac], + [0xfc, 0xec, 0xae], [0xfc, 0xee, 0xb0], [0xfc, 0xf0, 0xb1], [0xfc, 0xf1, 0xb3], [0xfc, 0xf3, 0xb5], [0xfc, 0xf5, 0xb7], + [0xfb, 0xf7, 0xb9], [0xfb, 0xf9, 0xbb], [0xfb, 0xfa, 0xbd], [0xfb, 0xfc, 0xbf], +], dtype="uint8") + +def mandelbrot(width: int, height: int, *, + x: float = -0.5, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array: + """ + From https://www.learnpythonwithrune.org/numpy-compute-mandelbrot-set-by-vectorization/. + """ + # To make navigation easier we calculate these values + x_width, y_height = 1.5, 1.5*height/width + x_from, x_to = x - x_width/zoom, x + x_width/zoom + y_from, y_to = y - y_height/zoom, y + y_height/zoom + + # Here the actual algorithm starts + x = np.linspace(x_from, x_to, width).reshape((1, width)) + y = np.linspace(y_from, y_to, height).reshape((height, 1)) + c = x + 1j*y + + # Initialize z to all zero + z = np.zeros(c.shape, dtype=np.complex128) + + # To keep track in which iteration the point diverged + div_time = np.zeros(z.shape, dtype=int) + + # To keep track on which points did not converge so far + m = np.full(c.shape, True, dtype=bool) + for i in range(max_iterations): + z[m] = z[m]**2 + c[m] + diverged = np.greater(np.abs(z), 2, out=np.full(c.shape, False), where=m) # Find diverging + div_time[diverged] = i # set the value of the diverged iteration number + m[np.abs(z) > 2] = False # to remember which have diverged + + return div_time + +def julia(width: int, height: int, *, + c: complex = -0.4 + 0.6j, x: float = 0, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array: + """ + From https://www.learnpythonwithrune.org/numpy-calculate-the-julia-set-with-vectorization/. + """ + # To make navigation easier we calculate these values + x_width, y_height = 1.5, 1.5*height/width + x_from, x_to = x - x_width/zoom, x + x_width/zoom + y_from, y_to = y - y_height/zoom, y + y_height/zoom + + # Here the actual algorithm starts + x = np.linspace(x_from, x_to, width).reshape((1, width)) + y = np.linspace(y_from, y_to, height).reshape((height, 1)) + z = x + 1j*y + + # Initialize z to all zero + c = np.full(z.shape, c) + + # To keep track in which iteration the point diverged + div_time = np.zeros(z.shape, dtype=int) + + # To keep track on which points did not converge so far + m = np.full(c.shape, True, dtype=bool) + for i in range(max_iterations): + z[m] = z[m]**2 + c[m] + m[np.abs(z) > 2] = False + div_time[m] = i + + return div_time + +def create_canvas(width: int, height: int, target: str) -> Context2d: + pixel_ratio = devicePixelRatio + + canvas = document.createElement("canvas") + ctx = canvas.getContext("2d") + + canvas.style.width = f"{width}px" + canvas.style.height = f"{height}px" + + canvas.width = width*pixel_ratio + canvas.height = height*pixel_ratio + + ctx.scale(pixel_ratio, pixel_ratio) + ctx.translate(0.5, 0.5) + + ctx.clearRect(0, 0, width, height) + + el = document.querySelector(target) + el.replaceChildren(canvas) + + return ctx + +def color_map(array: np.array, palette: np.array) -> np.array: + size, _ = palette.shape + index = (array/array.max()*(size - 1)).round().astype("uint8") + + width, height = array.shape + image = np.full((width, height, 4), 0xff, dtype=np.uint8) + image[:, :, :3] = palette[index] + + return image + +def draw_image(ctx: Context2d, image: np.array) -> None: + data = Uint8ClampedArray.new(to_js(image.tobytes())) + width, height, _ = image.shape + image_data = ImageData.new(data, width, height) + ctx.putImageData(image_data, 0, 0) + +def draw_mandelbrot(width: int, height: int) -> None: + ctx = create_canvas(width, height, "#mandelbrot") + + console.log("Computing Mandelbrot set ...") + console.time("mandelbrot") + array = mandelbrot(width, height) + console.timeEnd("mandelbrot") + + image = color_map(array, Magma256) + draw_image(ctx, image) + +def draw_julia(width: int, height: int) -> None: + ctx = create_canvas(width, height, "#julia") + + console.log("Computing Julia set ...") + console.time("julia") + array = julia(width, height) + console.timeEnd("julia") + + image = color_map(array, Magma256) + draw_image(ctx, image) + +draw_mandelbrot(600, 600) +draw_julia(600, 600) + + + +