- bokeh - numpy - pandas - scikit-learn
import asyncio import micropip from io import StringIO from js import fetch await micropip.install(['panel==0.13.0rc9', 'altair']) import altair as alt import panel as pn import pandas as pd from panel.io.pyodide import show from sklearn.cluster import KMeans pn.config.sizing_mode = 'stretch_width' data = await fetch('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') penguins = pd.read_csv(StringIO(await data.text())).dropna() cols = list(penguins.columns)[2:6] x = pn.widgets.Select(name='x', options=cols, value='bill_depth_mm') y = pn.widgets.Select(name='y', options=cols, value='bill_length_mm') n_clusters = pn.widgets.IntSlider(name='n_clusters', start=1, end=5, value=3) @pn.depends(x.param.value, y.param.value, n_clusters.param.value) def get_clusters(x, y, n_clusters): kmeans = KMeans(n_clusters=n_clusters) est = kmeans.fit(penguins[cols].values) df = penguins.copy() df['labels'] = est.labels_.astype('str') centers = df.groupby('labels').mean() table.value = df return ( alt.Chart(df) .mark_point(size=100) .encode( x=alt.X(x, scale=alt.Scale(zero=False)), y=alt.Y(y, scale=alt.Scale(zero=False)), shape='labels', color='species' ).properties(width=800) + alt.Chart(centers) .mark_point(size=200, shape='cross', color='black') .encode(x=x+':Q', y=y+':Q') ) table = pn.widgets.Tabulator(penguins, pagination='remote', page_size=10) intro = """ This app provides an example of **building a simple dashboard using Panel**.\n\nIt demonstrates how to take the output of **k-means clustering on the Penguins dataset** using scikit-learn, parameterizing the number of clusters and the variables to plot.\n\nThe entire clustering and plotting pipeline is expressed as a **single reactive function** that responsively returns an updated plot when one of the widgets changes.\n\n The **`x` marks the center** of the cluster. """ await show(x, 'x-widget') await show(y, 'y-widget') await show(n_clusters, 'n-widget') await show(intro, 'intro') await show(get_clusters, 'cluster-plot') await show(table, 'table')