1
0
mirror of https://github.com/pyscript/pyscript.git synced 2022-05-01 19:47:48 +03:00
Files
pyscript-python-html/pyscriptjs/examples/panel_kmeans.html
Fabio Pliger fa438a14ab merge main
2022-04-10 15:57:04 -05:00

181 lines
6.9 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Pyscript/Panel KMeans Demo</title>
<link rel="icon" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/icons/favicon.ico" type="">
<meta name="name" content="PyScript/Panel KMeans Demo">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/css/markdown.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/css/loading.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/css/dataframe.css" type="text/css" />
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega-embed@6"></script>
<script type="text/javascript" src="https://unpkg.com/tabulator-tables@4.9.3/dist/js/tabulator.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-2.4.2.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.2.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/panel.min.js"></script>
<script type="text/javascript">
Bokeh.set_log_level("info");
</script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0-rc.10/dist/bundled/defaulttheme/default.css">
<style>
#sidebar {
width: 350px;
}
</style>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.5.1/dist/jquery.slim.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></script>
<link rel="stylesheet" href="../build/pyscript.css" />
<script defer src="../build/pyscript.js"></script>
</head>
<body>
<py-env>
- bokeh
- numpy
- pandas
- scikit-learn
</py-env>
<div class="container-fluid d-flex flex-column vh-100 overflow-hidden" id="container">
<nav class="navbar navbar-expand-md navbar-dark sticky-top shadow" style="" id="header">
<button type="button" class="navbar-toggle collapsed" id="sidebarCollapse">
<span class="navbar-toggler-icon"></span>
</button>
<div class="app-header">
<a class="title" href="/" >&nbsp;Panel</a>
<span class="title">&nbsp;-</span>
<a class="title" href="" >&nbsp;Pyscript KMeans Clustering Demo</a>
</div>
</nav>
<div class="row overflow-hidden" id="content">
<div class="sidenav" id="sidebar">
<ul class="nav flex-column">
<div class="bk-root" id="x-widget" data-root-id="1021"></div>
<div class="bk-root" id="y-widget" data-root-id="1026"></div>
<div class="bk-root" id="n-widget" data-root-id="1031"></div>
</ul>
</div>
<div class="col mh-100 float-left" id="main">
<div class="bk-root" id="intro" data-root-id="1008"></div>
<div class="bk-root" id="cluster-plot" data-root-id="1009"></div>
<div class="bk-root" id="table" data-root-id="1009"></div>
</div>
</div>
</div>
<py-script>
import asyncio
import micropip
from io import StringIO
from js import fetch
await micropip.install(['panel==0.13.0rc10', 'altair'])
import altair as alt
import panel as pn
import pandas as pd
from panel.io.pyodide import show
from sklearn.cluster import KMeans
pn.config.sizing_mode = 'stretch_width'
data = await fetch('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv')
penguins = pd.read_csv(StringIO(await data.text())).dropna()
cols = list(penguins.columns)[2:6]
x = pn.widgets.Select(name='x', options=cols, value='bill_depth_mm')
y = pn.widgets.Select(name='y', options=cols, value='bill_length_mm')
n_clusters = pn.widgets.IntSlider(name='n_clusters', start=1, end=5, value=3)
brush = alt.selection_interval(name='brush') # selection of type "interval"
def get_clusters(n_clusters):
kmeans = KMeans(n_clusters=n_clusters)
est = kmeans.fit(penguins[cols].values)
df = penguins.copy()
df['labels'] = est.labels_.astype('str')
return df
def get_chart(x, y, df):
centers = df.groupby('labels').mean()
return (alt.Chart(df)
.mark_point(size=100)
.encode(
x=alt.X(x, scale=alt.Scale(zero=False)),
y=alt.Y(y, scale=alt.Scale(zero=False)),
shape='labels',
color='species'
).add_selection(brush).properties(width=800) +
alt.Chart(centers)
.mark_point(size=250, shape='cross', color='black')
.encode(x=x+':Q', y=y+':Q')
)
chart = pn.pane.Vega()
table = pn.widgets.Tabulator(pagination='remote', page_size=10)
def update_table(event=None):
table.value = get_clusters(n_clusters.value)
n_clusters.param.watch(update_table, 'value')
@pn.depends(x, y, n_clusters, watch=True)
def update_chart(*events):
chart.object = get_chart(x.value, y.value, table.value)
chart.selection.param.watch(update_filters, 'brush')
def update_filters(event=None):
filters = []
for k, v in (getattr(event, 'new') or {}).items():
filters.append(dict(field=k, type='>=', value=v[0]))
filters.append(dict(field=k, type='<=', value=v[1]))
table.filters = filters
update_table()
update_chart()
intro = """
This app provides an example of **building a simple dashboard using
Panel**.\n\nIt demonstrates how to take the output of **k-means
clustering on the Penguins dataset** using scikit-learn,
parameterizing the number of clusters and the variables to
plot.\n\nThe plot and the table are linked, i.e. selecting on the plot
will filter the data in the table.\n\n The **`x` marks the center** of
the cluster.
"""
await show(x, 'x-widget')
await show(y, 'y-widget')
await show(n_clusters, 'n-widget')
await show(intro, 'intro')
await show(chart, 'cluster-plot')
await show(table, 'table')
</py-script>
<script>
$(document).ready(function () {
$('#sidebarCollapse').on('click', function () {
$('#sidebar').toggleClass('active')
$(this).toggleClass('active')
var interval = setInterval(function () { window.dispatchEvent(new Event('resize')); }, 10);
setTimeout(function () { clearInterval(interval) }, 210)
});
});
</script>
</body>
</html>