mirror of
https://github.com/open-thought/reasoning-gym.git
synced 2025-10-09 13:40:09 +03:00
134 lines
4.9 KiB
Python
134 lines
4.9 KiB
Python
"""Tests for propositional logic task generation"""
|
|
|
|
import pytest
|
|
|
|
from reasoning_gym.logic.propositional_logic import (
|
|
Expression,
|
|
Operator,
|
|
PropositionalLogicConfig,
|
|
PropositionalLogicCurriculum,
|
|
PropositionalLogicDataset,
|
|
)
|
|
|
|
|
|
def test_propositional_logic_config_validation():
|
|
"""Test that invalid configs raise appropriate errors"""
|
|
with pytest.raises(AssertionError):
|
|
config = PropositionalLogicConfig(min_vars=0)
|
|
config.validate()
|
|
|
|
with pytest.raises(AssertionError):
|
|
config = PropositionalLogicConfig(min_vars=4, max_vars=3)
|
|
config.validate()
|
|
|
|
with pytest.raises(AssertionError):
|
|
config = PropositionalLogicConfig(min_statements=0)
|
|
config.validate()
|
|
|
|
|
|
def test_expression_evaluation():
|
|
"""Test logical expression evaluation"""
|
|
# Test simple variable
|
|
expr = Expression(None, "P")
|
|
assert expr.evaluate({"P": True}) is True
|
|
assert expr.evaluate({"P": False}) is False
|
|
|
|
# Test NOT
|
|
expr = Expression(Operator.NOT, Expression(None, "P"))
|
|
assert expr.evaluate({"P": True}) is False
|
|
assert expr.evaluate({"P": False}) is True
|
|
|
|
# Test AND
|
|
expr = Expression(Operator.AND, Expression(None, "P"), Expression(None, "Q"))
|
|
assert expr.evaluate({"P": True, "Q": True}) is True
|
|
assert expr.evaluate({"P": True, "Q": False}) is False
|
|
|
|
# Test IMPLIES
|
|
expr = Expression(Operator.IMPLIES, Expression(None, "P"), Expression(None, "Q"))
|
|
assert expr.evaluate({"P": True, "Q": False}) is False
|
|
assert expr.evaluate({"P": True, "Q": True}) is True
|
|
assert expr.evaluate({"P": False, "Q": False}) is True
|
|
|
|
|
|
def test_propositional_logic_dataset_deterministic():
|
|
"""Test that dataset generates same items with same seed"""
|
|
config = PropositionalLogicConfig(seed=42, size=10)
|
|
dataset1 = PropositionalLogicDataset(config)
|
|
dataset2 = PropositionalLogicDataset(config)
|
|
|
|
for i in range(len(dataset1)):
|
|
assert dataset1[i] == dataset2[i]
|
|
|
|
|
|
def test_propositional_logic_dataset_items():
|
|
"""Test basic properties of generated items"""
|
|
config = PropositionalLogicConfig(
|
|
min_vars=2, max_vars=3, min_statements=2, max_statements=3, max_complexity=2, size=10, seed=42
|
|
)
|
|
dataset = PropositionalLogicDataset(config)
|
|
|
|
for i in range(len(dataset)):
|
|
item = dataset[i]
|
|
assert isinstance(item, dict)
|
|
assert "question" in item
|
|
assert "answer" in item
|
|
assert "metadata" in item
|
|
assert isinstance(item["metadata"]["premises"], list)
|
|
assert isinstance(item["metadata"]["variables"], list)
|
|
assert isinstance(item["metadata"]["complexity"], int)
|
|
|
|
|
|
def test_propositional_logic_dataset_iteration():
|
|
"""Test that iteration respects dataset size"""
|
|
config = PropositionalLogicConfig(size=5, seed=42)
|
|
dataset = PropositionalLogicDataset(config)
|
|
|
|
items = list(dataset)
|
|
assert len(items) == config.size
|
|
|
|
# Test multiple iterations yield same items
|
|
assert items == list(dataset)
|
|
|
|
|
|
def test_propositional_logic_dataset_score_answer_correct():
|
|
dataset = PropositionalLogicDataset(PropositionalLogicConfig(size=50, seed=101))
|
|
for i, item in enumerate(dataset):
|
|
score = dataset.score_answer(item["metadata"]["example_answer"], item)
|
|
assert score == 1.0
|
|
|
|
|
|
def test_propositional_logic_dataset_score_answer_incorrect():
|
|
dataset = PropositionalLogicDataset(PropositionalLogicConfig(size=100, seed=101))
|
|
for i, item in enumerate(dataset):
|
|
score = dataset.score_answer("Wrong", item)
|
|
assert score == 0.0
|
|
|
|
|
|
def test_propositional_logic_curriculum():
|
|
curriculum = PropositionalLogicCurriculum()
|
|
|
|
base_value = {"size": 150, "seed": 1}
|
|
|
|
base_cfg: PropositionalLogicConfig = curriculum.generate_configuration(base_value)
|
|
assert base_cfg.seed == 1
|
|
assert base_cfg.size == 150
|
|
assert base_cfg.min_vars == 2 and base_cfg.max_vars == 2
|
|
assert base_cfg.min_statements == 2 and base_cfg.max_statements == 2
|
|
assert base_cfg.min_complexity == 1 and base_cfg.max_complexity == 1
|
|
|
|
# test incrementing attribute levels
|
|
curriculum.increment_attr_level("vars")
|
|
curriculum.increment_attr_level("statements")
|
|
curriculum.increment_attr_level("complexity")
|
|
increased_cfg = curriculum.generate_configuration(base_value)
|
|
assert increased_cfg.min_vars == 2 and increased_cfg.max_vars == 4
|
|
assert increased_cfg.min_statements == 2 and increased_cfg.max_statements == 4
|
|
assert increased_cfg.min_complexity == 1 and increased_cfg.max_complexity == 2
|
|
|
|
# test decrementing attribute level for vars again
|
|
curriculum.decrement_attr_level("vars")
|
|
partially_decreased_cfg = curriculum.generate_configuration(base_value)
|
|
assert partially_decreased_cfg.min_vars == 2 and partially_decreased_cfg.max_vars == 2
|
|
assert partially_decreased_cfg.min_statements == 2 and partially_decreased_cfg.max_statements == 4
|
|
assert partially_decreased_cfg.min_complexity == 1 and partially_decreased_cfg.max_complexity == 2
|