Files
reasoning-gym/tests/test_propositional_logic.py
Zafir Stojanovski d33c667c3d feat(env): Propositional Logic Curriculum (#365)
* propositional logic curriculum

* lint

* difficulty meta
2025-03-14 16:12:39 +01:00

134 lines
4.9 KiB
Python

"""Tests for propositional logic task generation"""
import pytest
from reasoning_gym.logic.propositional_logic import (
Expression,
Operator,
PropositionalLogicConfig,
PropositionalLogicCurriculum,
PropositionalLogicDataset,
)
def test_propositional_logic_config_validation():
"""Test that invalid configs raise appropriate errors"""
with pytest.raises(AssertionError):
config = PropositionalLogicConfig(min_vars=0)
config.validate()
with pytest.raises(AssertionError):
config = PropositionalLogicConfig(min_vars=4, max_vars=3)
config.validate()
with pytest.raises(AssertionError):
config = PropositionalLogicConfig(min_statements=0)
config.validate()
def test_expression_evaluation():
"""Test logical expression evaluation"""
# Test simple variable
expr = Expression(None, "P")
assert expr.evaluate({"P": True}) is True
assert expr.evaluate({"P": False}) is False
# Test NOT
expr = Expression(Operator.NOT, Expression(None, "P"))
assert expr.evaluate({"P": True}) is False
assert expr.evaluate({"P": False}) is True
# Test AND
expr = Expression(Operator.AND, Expression(None, "P"), Expression(None, "Q"))
assert expr.evaluate({"P": True, "Q": True}) is True
assert expr.evaluate({"P": True, "Q": False}) is False
# Test IMPLIES
expr = Expression(Operator.IMPLIES, Expression(None, "P"), Expression(None, "Q"))
assert expr.evaluate({"P": True, "Q": False}) is False
assert expr.evaluate({"P": True, "Q": True}) is True
assert expr.evaluate({"P": False, "Q": False}) is True
def test_propositional_logic_dataset_deterministic():
"""Test that dataset generates same items with same seed"""
config = PropositionalLogicConfig(seed=42, size=10)
dataset1 = PropositionalLogicDataset(config)
dataset2 = PropositionalLogicDataset(config)
for i in range(len(dataset1)):
assert dataset1[i] == dataset2[i]
def test_propositional_logic_dataset_items():
"""Test basic properties of generated items"""
config = PropositionalLogicConfig(
min_vars=2, max_vars=3, min_statements=2, max_statements=3, max_complexity=2, size=10, seed=42
)
dataset = PropositionalLogicDataset(config)
for i in range(len(dataset)):
item = dataset[i]
assert isinstance(item, dict)
assert "question" in item
assert "answer" in item
assert "metadata" in item
assert isinstance(item["metadata"]["premises"], list)
assert isinstance(item["metadata"]["variables"], list)
assert isinstance(item["metadata"]["complexity"], int)
def test_propositional_logic_dataset_iteration():
"""Test that iteration respects dataset size"""
config = PropositionalLogicConfig(size=5, seed=42)
dataset = PropositionalLogicDataset(config)
items = list(dataset)
assert len(items) == config.size
# Test multiple iterations yield same items
assert items == list(dataset)
def test_propositional_logic_dataset_score_answer_correct():
dataset = PropositionalLogicDataset(PropositionalLogicConfig(size=50, seed=101))
for i, item in enumerate(dataset):
score = dataset.score_answer(item["metadata"]["example_answer"], item)
assert score == 1.0
def test_propositional_logic_dataset_score_answer_incorrect():
dataset = PropositionalLogicDataset(PropositionalLogicConfig(size=100, seed=101))
for i, item in enumerate(dataset):
score = dataset.score_answer("Wrong", item)
assert score == 0.0
def test_propositional_logic_curriculum():
curriculum = PropositionalLogicCurriculum()
base_value = {"size": 150, "seed": 1}
base_cfg: PropositionalLogicConfig = curriculum.generate_configuration(base_value)
assert base_cfg.seed == 1
assert base_cfg.size == 150
assert base_cfg.min_vars == 2 and base_cfg.max_vars == 2
assert base_cfg.min_statements == 2 and base_cfg.max_statements == 2
assert base_cfg.min_complexity == 1 and base_cfg.max_complexity == 1
# test incrementing attribute levels
curriculum.increment_attr_level("vars")
curriculum.increment_attr_level("statements")
curriculum.increment_attr_level("complexity")
increased_cfg = curriculum.generate_configuration(base_value)
assert increased_cfg.min_vars == 2 and increased_cfg.max_vars == 4
assert increased_cfg.min_statements == 2 and increased_cfg.max_statements == 4
assert increased_cfg.min_complexity == 1 and increased_cfg.max_complexity == 2
# test decrementing attribute level for vars again
curriculum.decrement_attr_level("vars")
partially_decreased_cfg = curriculum.generate_configuration(base_value)
assert partially_decreased_cfg.min_vars == 2 and partially_decreased_cfg.max_vars == 2
assert partially_decreased_cfg.min_statements == 2 and partially_decreased_cfg.max_statements == 4
assert partially_decreased_cfg.min_complexity == 1 and partially_decreased_cfg.max_complexity == 2