mirror of
https://github.com/open-thought/reasoning-gym.git
synced 2025-10-09 13:40:09 +03:00
* init * fix tests * unify codeio * filtered for libraries not present in reasoning-gym * fix more bounds * puzzle24 * knight swap curriculum * fix number sorting * fix attributes * add validation of config in creation of dataset * dry run for instantiating and validating the datasets * remove unused imports * fix curriculum tests to reference newly updated attribute names
166 lines
5.0 KiB
Python
166 lines
5.0 KiB
Python
from dataclasses import dataclass
|
|
from random import Random
|
|
from typing import Any, Optional
|
|
|
|
from ..coaching import BaseCurriculum, ScalarAttributeDefinition
|
|
from ..factory import ProceduralDataset, register_dataset
|
|
|
|
DATASET_NAME = "ab"
|
|
|
|
|
|
def generate_program(length, rng):
|
|
"""Generates a random initial program of a given length."""
|
|
elements = ["A#", "B#", "#A", "#B"]
|
|
return [rng.choice(elements) for _ in range(length)]
|
|
|
|
|
|
def compute_steps(program, max_steps=100):
|
|
"""Computes the transformation steps and detects if the program does not halt."""
|
|
steps = [program.copy()]
|
|
seen_states = {tuple(program)}
|
|
|
|
for step in range(max_steps):
|
|
current = steps[-1]
|
|
new_program = None
|
|
|
|
for i in range(len(current) - 1):
|
|
a, b = current[i], current[i + 1]
|
|
if a == "A#" and b == "#A":
|
|
new_program = current[:i] + current[i + 2 :]
|
|
elif a == "A#" and b == "#B":
|
|
new_program = current[:i] + ["#B", "A#"] + current[i + 2 :]
|
|
elif a == "B#" and b == "#A":
|
|
new_program = current[:i] + ["#A", "B#"] + current[i + 2 :]
|
|
elif a == "B#" and b == "#B":
|
|
new_program = current[:i] + current[i + 2 :]
|
|
|
|
if new_program is not None:
|
|
break
|
|
|
|
if new_program is None:
|
|
# No more transformations possible
|
|
return steps, False
|
|
|
|
if tuple(new_program) in seen_states:
|
|
# Detected a loop, meaning non-halting behavior
|
|
return steps, True
|
|
|
|
steps.append(new_program)
|
|
seen_states.add(tuple(new_program))
|
|
|
|
return steps, True # Reached max steps, assume non-halting
|
|
|
|
|
|
@dataclass
|
|
class ABConfig:
|
|
"""Configuration for A::B task generation"""
|
|
|
|
seed: Optional[int] = None
|
|
size: int = 500
|
|
length: int = 10
|
|
|
|
def validate(self) -> None:
|
|
"""Validate configuration parameters"""
|
|
assert self.length > 0, "length must be greater than 0"
|
|
assert self.size > 0, "size must be greater than 0"
|
|
|
|
|
|
class ABDataset(ProceduralDataset):
|
|
"""Generates A::B tasks, as described by @VictorTaelin [here](https://x.com/VictorTaelin/status/1776096481704804789)"""
|
|
|
|
def __init__(self, config: ABConfig):
|
|
super().__init__(config=config, seed=config.seed, size=config.size)
|
|
|
|
def __getitem__(self, idx: int) -> dict:
|
|
"""Generate a single AB task
|
|
|
|
Returns:
|
|
dict with keys:
|
|
- question: str, the task description with AB program
|
|
- answer: str, the result of this AB program ABI execution
|
|
- metadata: dict with generation parameters
|
|
"""
|
|
rng = Random(self.seed + idx)
|
|
|
|
while True:
|
|
initial_program = generate_program(self.config.length, rng)
|
|
steps, non_halting = compute_steps(initial_program)
|
|
if not non_halting:
|
|
break
|
|
|
|
# Via:
|
|
# https://x.com/VictorTaelin/status/1776248021858111542
|
|
# https://gist.github.com/VictorTaelin/e514844f4df9e5f182b28e5a07e44b17
|
|
prompt = f"""A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.
|
|
|
|
An A::B program is a sequence of tokens. Example:
|
|
|
|
B# A# #B #A B#
|
|
|
|
To *compute* a program, we must rewrite neighbor tokens, using the rules:
|
|
|
|
A# #A ... becomes ... nothing
|
|
A# #B ... becomes ... #B A#
|
|
B# #A ... becomes ... #A B#
|
|
B# #B ... becomes ... nothing
|
|
|
|
In other words, whenever two neighbor tokens have their '#' facing each-other,
|
|
they must be rewritten according to the corresponding rule.
|
|
|
|
Now, consider the following program:
|
|
|
|
{' '.join(initial_program)}
|
|
|
|
Return the final state of the program.
|
|
"""
|
|
|
|
return {
|
|
"question": prompt,
|
|
"answer": " ".join(steps[-1]),
|
|
"metadata": {
|
|
"source_dataset": DATASET_NAME,
|
|
"source_index": idx,
|
|
"difficulty": {
|
|
"length": self.config.length,
|
|
},
|
|
},
|
|
}
|
|
|
|
def score_answer(self, answer: Optional[str], entry: dict[str, Any]) -> float:
|
|
"""Determine if the solution provided solves the AB task.
|
|
|
|
The function awards 1.0 for a correct answer.
|
|
|
|
Args:
|
|
answer (Optional[str]): The user's answer.
|
|
entry (dict[str, Any]): The original dataset entry containing the correct answer.
|
|
|
|
Returns:
|
|
float: The computed score between 0.0 and 1.0.
|
|
"""
|
|
|
|
if answer == entry["answer"]:
|
|
return 1.0 # Yay
|
|
return 0.0
|
|
|
|
|
|
class ABCurriculum(BaseCurriculum):
|
|
"""Curriculum for A::B dataset"""
|
|
|
|
def __init__(self):
|
|
super().__init__(ABCurriculum.__name__, ABConfig)
|
|
|
|
# Define attributes
|
|
self._define_attributes(
|
|
ScalarAttributeDefinition(
|
|
name="length",
|
|
field_name="length",
|
|
levels=[10, 25, 50, 100],
|
|
description="Length of the A::B program",
|
|
)
|
|
)
|
|
|
|
|
|
# Register the dataset
|
|
register_dataset(DATASET_NAME, ABDataset, ABConfig, ABCurriculum)
|