Files
reasoning-gym/training/configs/external_benchmarks/maths_llama_3b.yaml
Oliver Stanley add527ada1 update training dir with external eval details (#437)
* added games

* added llama 3b training conf

* update readme with details of external evals

* readme update

---------

Co-authored-by: joesharratt1229 <joesharratt1229@gmail.com>
2025-05-19 00:35:41 +02:00

222 lines
6.9 KiB
YAML

reasoning_gym:
dataset_size: 40000
developer_prompt: DeepSeekZero
datasets:
complex_arithmetic:
weight: 1
intermediate_integration:
weight: 1
polynomial_equations:
weight: 1
polynomial_multiplication:
weight: 1
simple_geometry:
weight: 1
bitwise_arithmetic:
weight: 1
chain_sum:
weight: 1
decimal_arithmetic:
weight: 1
decimal_chain_sum:
weight: 1
curriculum:
enabled: False
schedule:
automatic: True
update_steps: 30 # automatic curriculum updating after 50 steps
last_k: 20
success_threshold: 0.70
failure_threshold: 0.10
curricula:
spell_backward:
attribute_levels:
word_len: 0
reward:
use_accuracy: True
secondary_rewards:
- name: cosine
scaling_factor: 0.3
- name: format
scaling_factor: 0.2
kwargs:
preappend_thinking_token: False
data:
tokenizer: null
train_files: train.parquet
val_files: test.parquet
prompt_key: prompt
max_prompt_length: 512
max_response_length: 1024
train_batch_size: 32
val_batch_size: 64
return_raw_chat: True
return_raw_input_ids: True
actor_rollout_ref:
hybrid_engine: True
model:
path: meta-llama/Llama-3.2-3B-Instruct
external_lib: null
override_config: { }
enable_gradient_checkpointing: True
use_remove_padding: True
actor:
strategy: fsdp # This is for backward-compatibility
ppo_mini_batch_size: 16
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
ppo_micro_batch_size_per_gpu: 4
use_dynamic_bsz: False
ppo_max_token_len_per_gpu: 12288 # n * ${data.max_prompt_length} + ${data.max_response_length}
grad_clip: 1.0
clip_ratio: 0.2
entropy_coeff: 0.001
use_kl_loss: True # True for GRPO
kl_loss_coef: 0.001 # for grpo
kl_loss_type: low_var_kl # for grpo
ppo_epochs: 1
shuffle: False
ulysses_sequence_parallel_size: 1 # sp size
optim:
lr: 1e-6
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: 500 # must be override by program
fsdp_config:
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
param_offload: False
optimizer_offload: False
fsdp_size: -1
ref:
fsdp_config:
param_offload: True
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
log_prob_micro_batch_size_per_gpu: 160
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
rollout:
name: vllm
temperature: 1.0
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
top_p: 1
prompt_length: ${data.max_prompt_length} # not use for opensource
response_length: ${data.max_response_length}
# for vllm rollout
dtype: bfloat16 # should align with FSDP
gpu_memory_utilization: 0.7
ignore_eos: False
enforce_eager: True
free_cache_engine: True
load_format: dummy_dtensor
tensor_model_parallel_size: 4
max_num_batched_tokens: 12288
max_num_seqs: 1024
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
log_prob_micro_batch_size_per_gpu: 160
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
disable_log_stats: True
enable_chunked_prefill: True # could get higher throughput
# for hf rollout
do_sample: True
use_fire_sampling: False
max_model_len: 12288
# number of responses (i.e. num sample times)
n: 8 # > 1 for grpo
val_kwargs:
do_sample: True
algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: grpo
kl_penalty: kl # how to estimate kl divergence
kl_ctrl:
type: fixed
kl_coef: 0.001
verbose: True
trainer:
balance_batch: True
total_epochs: 1
total_training_steps: 2000
project_name: rg-test
experiment_name: intra_reasoning_algebra_qwen_3b_composite
logger: [ 'console', 'wandb' ]
val_generations_to_log_to_wandb: 0
nnodes: 1
n_gpus_per_node: 4
save_freq: 200
# auto: find the last ckpt to resume. If can't find, start from scratch
resume_mode: auto # or auto or resume_path if
resume_from_path: False
test_freq: 100
critic_warmup: 0
default_hdfs_dir: null
remove_previous_ckpt_in_save: False
del_local_ckpt_after_load: False
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
critic:
strategy: fsdp
optim:
lr: 1e-5
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: -1 # must be override by program
model:
path: ~/models/deepseek-llm-7b-chat
tokenizer_path: ${actor_rollout_ref.model.path}
override_config: { }
external_lib: ${actor_rollout_ref.model.external_lib}
enable_gradient_checkpointing: True
use_remove_padding: False
fsdp_config:
param_offload: False
optimizer_offload: False
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
fsdp_size: -1
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
ppo_micro_batch_size_per_gpu: null
forward_micro_batch_size: ${critic.ppo_micro_batch_size}
forward_micro_batch_size_per_gpu: ${critic.ppo_micro_batch_size_per_gpu}
use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: 1 # sp size
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
shuffle: ${actor_rollout_ref.actor.shuffle}
grad_clip: 1.0
cliprange_value: 0.5
# Reward model not used for GRPO
reward_model:
enable: False
strategy: fsdp
model:
input_tokenizer: ${actor_rollout_ref.model.path}
path: ~/models/FsfairX-LLaMA3-RM-v0.1
external_lib: ${actor_rollout_ref.model.external_lib}
use_remove_padding: False
fsdp_config:
min_num_params: 0
param_offload: False
fsdp_size: -1
micro_batch_size: null
micro_batch_size_per_gpu: null
max_length: null
ulysses_sequence_parallel_size: 1
use_dynamic_bsz: ${critic.use_dynamic_bsz}
forward_max_token_len_per_gpu: ${critic.forward_max_token_len_per_gpu}