mirror of
https://github.com/open-thought/reasoning-gym.git
synced 2025-10-09 13:40:09 +03:00
144 lines
5.1 KiB
Python
144 lines
5.1 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
from datetime import datetime
|
|
from typing import Any, Dict, List
|
|
|
|
from openai import OpenAI
|
|
|
|
from reasoning_gym.factory import DATASETS, create_dataset
|
|
|
|
|
|
class OpenRouterEvaluator:
|
|
def __init__(self, model: str):
|
|
self.client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=os.getenv("OPENROUTER_API_KEY"))
|
|
self.model = model
|
|
self.extra_headers = {}
|
|
|
|
def get_model_response(self, prompt: str) -> str:
|
|
"""Get response from the model via OpenRouter API."""
|
|
try:
|
|
completion = self.client.chat.completions.create(
|
|
extra_headers=self.extra_headers, model=self.model, messages=[{"role": "user", "content": prompt}]
|
|
)
|
|
return completion.choices[0].message.content
|
|
except Exception as e:
|
|
print(f"Error calling OpenRouter API: {str(e)}")
|
|
raise
|
|
|
|
def evaluate_datasets(self, dataset_configs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
"""Evaluate model on multiple datasets with their respective configurations."""
|
|
all_results = []
|
|
|
|
for dataset_config in dataset_configs:
|
|
dataset_name = dataset_config.pop("name")
|
|
print(f"\nEvaluating dataset: {dataset_name}")
|
|
|
|
try:
|
|
# Create dataset with its specific configuration
|
|
data = create_dataset(dataset_name, **dataset_config)
|
|
results = []
|
|
|
|
for entry in data:
|
|
try:
|
|
response = self.get_model_response(entry["question"])
|
|
score = data.score_answer(answer=response, entry=entry)
|
|
|
|
result = {
|
|
"question": entry["question"],
|
|
"expected_answer": entry["answer"],
|
|
"model_answer": response,
|
|
"score": score,
|
|
"metadata": entry["metadata"],
|
|
}
|
|
results.append(result)
|
|
print(f"Processed question {len(results)}/{len(data)}. Score: {score}")
|
|
|
|
except Exception as e:
|
|
print(f"Error processing question: {entry['question']}")
|
|
print(f"Error: {str(e)}")
|
|
|
|
# Calculate aggregate metrics
|
|
total_score = sum(r["score"] for r in results)
|
|
metrics = {
|
|
"dataset_name": dataset_name,
|
|
"model": self.model,
|
|
"size": len(data),
|
|
"average_score": total_score / len(results) if results else 0,
|
|
"total_examples": len(results),
|
|
"timestamp": datetime.now().isoformat(),
|
|
"config": dataset_config,
|
|
}
|
|
|
|
all_results.append({"metrics": metrics, "results": results})
|
|
|
|
except Exception as e:
|
|
print(f"Error evaluating dataset {dataset_name}: {str(e)}")
|
|
continue
|
|
|
|
return all_results
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Evaluate models on reasoning datasets")
|
|
parser.add_argument("--model", required=True, help="Model to evaluate")
|
|
parser.add_argument("--config", required=True, help="Path to JSON configuration file")
|
|
parser.add_argument("--output-dir", default="results", help="Output directory")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Create output directory if it doesn't exist
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
# Load dataset configurations
|
|
with open(args.config, "r") as f:
|
|
dataset_configs = json.load(f)
|
|
|
|
evaluator = OpenRouterEvaluator(model=args.model)
|
|
all_results = evaluator.evaluate_datasets(dataset_configs)
|
|
|
|
# Save results
|
|
output_file = os.path.join(
|
|
args.output_dir, f"evaluation_{args.model.replace('/', '_')}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
|
)
|
|
|
|
# Save detailed results
|
|
with open(output_file, "w") as f:
|
|
json.dump(all_results, f, indent=2)
|
|
|
|
# Create summary
|
|
summary = []
|
|
for result in all_results:
|
|
metrics = result["metrics"]
|
|
summary_entry = {
|
|
"dataset_name": metrics["dataset_name"],
|
|
"model": metrics["model"],
|
|
"average_score": metrics["average_score"],
|
|
"total_examples": metrics["total_examples"],
|
|
"timestamp": metrics["timestamp"],
|
|
"config": metrics["config"],
|
|
}
|
|
summary.append(summary_entry)
|
|
|
|
# Save summary to a separate file
|
|
summary_file = os.path.join(
|
|
args.output_dir, f"summary_{args.model.replace('/', '_')}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
|
)
|
|
|
|
with open(summary_file, "w") as f:
|
|
json.dump(summary, f, indent=2)
|
|
|
|
# Print summary
|
|
print("\nEvaluation Summary:")
|
|
for entry in summary:
|
|
print(f"\nDataset: {entry['dataset_name']}")
|
|
print(f"Average Score: {entry['average_score']:.2%}")
|
|
print(f"Total Examples: {entry['total_examples']}")
|
|
|
|
print(f"\nDetailed results saved to: {output_file}")
|
|
print(f"Summary saved to: {summary_file}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|