mirror of
https://github.com/open-thought/reasoning-gym.git
synced 2025-10-09 13:40:09 +03:00
* feat: Add optional curriculum support to dataset registration and creation * docs: Add docstrings to create_curriculum() and register_dataset() * feat: Add curriculum configuration classes for CurriculumExperiment * feat: Add weight parameter to CurriculumAttributeConfig and use in DatasetSpec * refactor: Simplify CurriculumAttributeConfig with "*" attribute level support * test: Add unit tests for CurriculumExperiment class * feat: Add from_yaml() method to CurriculumExperimentConfig with unit test
172 lines
6.0 KiB
YAML
172 lines
6.0 KiB
YAML
data:
|
|
tokenizer: null
|
|
train_files: ~/data/rlhf/gsm8k/train.parquet
|
|
val_files: ~/data/rlhf/gsm8k/test.parquet
|
|
prompt_key: prompt
|
|
max_prompt_length: 512
|
|
max_response_length: 512
|
|
train_batch_size: 1024
|
|
val_batch_size: 1312
|
|
return_raw_input_ids: False # This should be set to true when the tokenizer between policy and rm differs
|
|
return_raw_chat: False
|
|
|
|
actor_rollout_ref:
|
|
hybrid_engine: True
|
|
model:
|
|
path: ~/models/deepseek-llm-7b-chat
|
|
external_lib: null
|
|
override_config: { }
|
|
enable_gradient_checkpointing: True
|
|
use_remove_padding: False
|
|
actor:
|
|
strategy: fsdp # This is for backward-compatibility
|
|
ppo_mini_batch_size: 256
|
|
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
|
|
ppo_micro_batch_size_per_gpu: null
|
|
use_dynamic_bsz: False
|
|
ppo_max_token_len_per_gpu: 16384 # n * ${data.max_prompt_length} + ${data.max_response_length}
|
|
grad_clip: 1.0
|
|
clip_ratio: 0.2
|
|
entropy_coeff: 0.001
|
|
use_kl_loss: True # True for GRPO
|
|
kl_loss_coef: 0.001 # for grpo
|
|
kl_loss_type: low_var_kl # for grpo
|
|
ppo_epochs: 1
|
|
shuffle: False
|
|
ulysses_sequence_parallel_size: 1 # sp size
|
|
optim:
|
|
lr: 1e-6
|
|
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
|
min_lr_ratio: null # only useful for warmup with cosine
|
|
warmup_style: constant # select from constant/cosine
|
|
total_training_steps: -1 # must be override by program
|
|
fsdp_config:
|
|
wrap_policy:
|
|
# transformer_layer_cls_to_wrap: None
|
|
min_num_params: 0
|
|
param_offload: False
|
|
optimizer_offload: False
|
|
fsdp_size: -1
|
|
ref:
|
|
fsdp_config:
|
|
param_offload: False
|
|
wrap_policy:
|
|
# transformer_layer_cls_to_wrap: None
|
|
min_num_params: 0
|
|
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
|
|
log_prob_micro_batch_size_per_gpu: null
|
|
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
|
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
|
|
ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
|
|
rollout:
|
|
name: vllm
|
|
temperature: 1.0
|
|
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
|
|
top_p: 1
|
|
prompt_length: ${data.max_prompt_length} # not use for opensource
|
|
response_length: ${data.max_response_length}
|
|
# for vllm rollout
|
|
dtype: bfloat16 # should align with FSDP
|
|
gpu_memory_utilization: 0.5
|
|
ignore_eos: False
|
|
enforce_eager: True
|
|
free_cache_engine: True
|
|
load_format: dummy_dtensor
|
|
tensor_model_parallel_size: 2
|
|
max_num_batched_tokens: 8192
|
|
max_num_seqs: 1024
|
|
log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
|
|
log_prob_micro_batch_size_per_gpu: null
|
|
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
|
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
|
|
disable_log_stats: True
|
|
enable_chunked_prefill: True # could get higher throughput
|
|
# for hf rollout
|
|
do_sample: True
|
|
# number of responses (i.e. num sample times)
|
|
n: 16 # > 1 for grpo
|
|
|
|
critic:
|
|
strategy: fsdp
|
|
optim:
|
|
lr: 1e-5
|
|
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
|
min_lr_ratio: null # only useful for warmup with cosine
|
|
warmup_style: constant # select from constant/cosine
|
|
total_training_steps: -1 # must be override by program
|
|
model:
|
|
path: ~/models/deepseek-llm-7b-chat
|
|
tokenizer_path: ${actor_rollout_ref.model.path}
|
|
override_config: { }
|
|
external_lib: ${actor_rollout_ref.model.external_lib}
|
|
enable_gradient_checkpointing: True
|
|
use_remove_padding: False
|
|
fsdp_config:
|
|
param_offload: False
|
|
optimizer_offload: False
|
|
wrap_policy:
|
|
# transformer_layer_cls_to_wrap: None
|
|
min_num_params: 0
|
|
fsdp_size: -1
|
|
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
|
|
ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
|
|
ppo_micro_batch_size_per_gpu: null
|
|
forward_micro_batch_size: ${critic.ppo_micro_batch_size}
|
|
forward_micro_batch_size_per_gpu: ${critic.ppo_micro_batch_size_per_gpu}
|
|
use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
|
ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
|
|
forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
|
|
ulysses_sequence_parallel_size: 1 # sp size
|
|
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
|
|
shuffle: ${actor_rollout_ref.actor.shuffle}
|
|
grad_clip: 1.0
|
|
cliprange_value: 0.5
|
|
|
|
reward_model:
|
|
enable: False
|
|
strategy: fsdp
|
|
model:
|
|
input_tokenizer: ${actor_rollout_ref.model.path} # set this to null if the chat template is identical
|
|
path: ~/models/FsfairX-LLaMA3-RM-v0.1
|
|
external_lib: ${actor_rollout_ref.model.external_lib}
|
|
use_remove_padding: False
|
|
fsdp_config:
|
|
min_num_params: 0
|
|
param_offload: False
|
|
fsdp_size: -1
|
|
micro_batch_size: null # will be deprecated, use micro_batch_size_per_gpu
|
|
micro_batch_size_per_gpu: null # set a number
|
|
max_length: null
|
|
ulysses_sequence_parallel_size: 1 # sp size
|
|
use_dynamic_bsz: ${critic.use_dynamic_bsz}
|
|
forward_max_token_len_per_gpu: ${critic.forward_max_token_len_per_gpu}
|
|
|
|
algorithm:
|
|
gamma: 1.0
|
|
lam: 1.0
|
|
adv_estimator: gae
|
|
kl_penalty: kl # how to estimate kl divergence
|
|
kl_ctrl:
|
|
type: fixed
|
|
kl_coef: 0.001
|
|
|
|
trainer:
|
|
total_epochs: 30
|
|
total_training_steps: null
|
|
project_name: verl_examples
|
|
experiment_name: gsm8k
|
|
logger: [ 'console', 'wandb' ]
|
|
val_generations_to_log_to_wandb: 0
|
|
nnodes: 1
|
|
n_gpus_per_node: 8
|
|
save_freq: -1
|
|
# auto: find the last ckpt to resume. If can't find, start from scratch
|
|
resume_mode: auto # or auto or resume_path if
|
|
resume_from_path: False
|
|
test_freq: -1
|
|
critic_warmup: 0
|
|
default_hdfs_dir: null
|
|
remove_previous_ckpt_in_save: False
|
|
del_local_ckpt_after_load: False
|
|
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
|