Files
reasoning-gym/examples/veRL/chain_sum/main_ppo_custom_reward.py
Andreas Köpf c69bc5d4e6 Basic curriculum (#198)
* feat: Add optional curriculum support to dataset registration and creation
* docs: Add docstrings to create_curriculum() and register_dataset()
* feat: Add curriculum configuration classes for CurriculumExperiment
* feat: Add weight parameter to CurriculumAttributeConfig and use in DatasetSpec
* refactor: Simplify CurriculumAttributeConfig with "*" attribute level support
* test: Add unit tests for CurriculumExperiment class
* feat: Add from_yaml() method to CurriculumExperimentConfig with unit test
2025-03-07 11:22:12 +01:00

286 lines
9.7 KiB
Python

# This example is an adapted version of Bytedance's code:
# https://github.com/volcengine/verl/blob/a65c9157bc0b85b64cd753de19f94e80a11bd871/verl/trainer/main_ppo.py
from typing import Optional
import hydra
import ray
import torch
import verl.utils.torch_functional as verl_F
from omegaconf import OmegaConf, open_dict
from torch.utils.data import DataLoader, Dataset
from transformers import PreTrainedTokenizer
from verl import DataProto
from verl.trainer.ppo.ray_trainer import RayPPOTrainer
from verl.utils.dataset.rl_dataset import collate_fn
from verl.utils.model import compute_position_id_with_mask
import reasoning_gym
import reasoning_gym.utils
from reasoning_gym.utils import extract_answer
class ReasoningGymDataset(Dataset):
def __init__(
self,
tokenizer: PreTrainedTokenizer,
dataset_name: str,
seed: int,
size: int,
developer_prompt: Optional[str] = None,
developer_role: str = "system",
max_prompt_length: int = 2048,
truncation: str = "error", ## ['left', 'right', 'error']
return_raw_chat: bool = False,
):
self.tokenizer = tokenizer
self.dataset_name = dataset_name
self.data = reasoning_gym.create_dataset(dataset_name, seed=seed, size=size)
self.developer_prompt = developer_prompt
self.developer_role = developer_role
self.max_prompt_length = max_prompt_length
self.truncation = truncation
self.return_raw_chat = return_raw_chat
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, index):
row_dict = self.data[index].copy()
q = row_dict["question"]
chat = []
if self.developer_prompt is not None:
chat.append({"role": self.developer_role, "content": self.developer_prompt})
chat.append({"role": "user", "content": q})
prompt = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_ids, attention_mask = verl_F.tokenize_and_postprocess_data(
prompt=prompt,
tokenizer=self.tokenizer,
max_length=self.max_prompt_length,
pad_token_id=self.tokenizer.pad_token_id,
left_pad=True,
truncation=self.truncation,
)
position_ids = compute_position_id_with_mask(attention_mask)
row_dict["data_source"] = "reasoning_gym/" + self.dataset_name
row_dict["input_ids"] = input_ids[0]
row_dict["attention_mask"] = attention_mask[0]
row_dict["position_ids"] = position_ids[0]
# encode prompts without chat template
if self.return_raw_chat:
row_dict["raw_prompt"] = chat.tolist()
# add index for each prompt
# index = row_dict.get("extra_info", {}).get("index", 0)
row_dict["index"] = index
return row_dict
class RayPPOTrainerCustom(RayPPOTrainer):
def __init__(
self,
config,
tokenizer,
role_worker_mapping: dict,
resource_pool_manager,
ray_worker_group_cls,
dataset_name: str = "chain_sum",
dataset_size: int = 10000,
):
self.dataset_name = dataset_name
self.dataset_size = dataset_size
developer_prompt = reasoning_gym.utils.SYSTEM_PROMPTS["DeepSeekZero"]
self.train_dataset = ReasoningGymDataset(
tokenizer=tokenizer,
dataset_name=self.dataset_name,
seed=1,
size=self.dataset_size,
developer_prompt=developer_prompt,
)
self.val_dataset = ReasoningGymDataset(
tokenizer=tokenizer,
dataset_name=self.dataset_name,
seed=2,
size=self.dataset_size,
developer_prompt=developer_prompt,
)
train_reward_fn = lambda data: self._score_output(data, num_examine=0)
val_reward_fn = lambda data: self._score_output(data, num_examine=1)
super().__init__(
config,
tokenizer,
role_worker_mapping,
resource_pool_manager,
ray_worker_group_cls,
train_reward_fn,
val_reward_fn,
)
def _score_output(self, data: DataProto, num_examine: int = 0) -> torch.Tensor:
reward_tensor = torch.zeros_like(data.batch["responses"], dtype=torch.float32)
num_printed = 0
for i in range(len(data)):
data_item = data[i] # DataProtoItem
prompt_ids = data_item.batch["prompts"] # tokenized prompts
prompt_length = prompt_ids.shape[-1]
valid_prompt_length = data_item.batch["attention_mask"][:prompt_length].sum()
valid_prompt_ids = prompt_ids[-valid_prompt_length:]
response_ids = data_item.batch["responses"]
valid_response_length = data_item.batch["attention_mask"][prompt_length:].sum()
valid_response_ids = response_ids[:valid_response_length]
# decode
sequences = torch.cat((valid_prompt_ids, valid_response_ids))
sequences_str = self.tokenizer.decode(sequences)
index = data_item.non_tensor_batch["index"]
score = self._compute_score(
solution_str=sequences_str,
index=index,
)
reward_tensor[i, valid_response_length - 1] = score
if num_printed < num_examine:
print(f"reward={score}, seq={sequences_str}")
num_printed += 1
return reward_tensor
def _compute_score(self, solution_str: str, index: int) -> float:
found_answer = extract_answer(solution_str, tag_name="answer")
entry = self.train_dataset.data[index]
reward = self.train_dataset.data.score_answer(found_answer, entry=entry)
# print(f"found answer={found_answer}; reward: {reward};")
return reward
def _create_dataloader(self):
self.train_dataloader = DataLoader(
dataset=self.train_dataset,
batch_size=self.config.data.train_batch_size,
shuffle=True,
drop_last=True,
collate_fn=collate_fn,
)
self.val_dataloader = DataLoader(
dataset=self.val_dataset,
batch_size=len(self.val_dataset),
shuffle=True,
drop_last=True,
collate_fn=collate_fn,
)
assert len(self.train_dataloader) >= 1
assert len(self.val_dataloader) >= 1
print(f"Size of train dataloader: {len(self.train_dataloader)}")
print(f"Size of val dataloader: {len(self.val_dataloader)}")
# inject total_training_steps to actor/critic optim_config. This is hacky.
total_training_steps = len(self.train_dataloader) * self.config.trainer.total_epochs
if self.config.trainer.total_training_steps is not None:
total_training_steps = self.config.trainer.total_training_steps
self.total_training_steps = total_training_steps
print(f"Total training steps: {self.total_training_steps}")
OmegaConf.set_struct(self.config, True)
with open_dict(self.config):
self.config.actor_rollout_ref.actor.optim.total_training_steps = total_training_steps
self.config.critic.optim.total_training_steps = total_training_steps
@ray.remote
def main_task(config):
# print initial config
from pprint import pprint
from verl.utils import hf_tokenizer
from verl.utils.fs import copy_local_path_from_hdfs
pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
OmegaConf.resolve(config)
# download the checkpoint from hdfs
local_path = copy_local_path_from_hdfs(config.actor_rollout_ref.model.path)
# instantiate tokenizer
tokenizer = hf_tokenizer(local_path)
# define worker classes
if config.actor_rollout_ref.actor.strategy == "fsdp":
assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
from verl.single_controller.ray import RayWorkerGroup
from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker
ray_worker_group_cls = RayWorkerGroup
elif config.actor_rollout_ref.actor.strategy == "megatron":
assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup
from verl.workers.megatron_workers import ActorRolloutRefWorker, CriticWorker
ray_worker_group_cls = NVMegatronRayWorkerGroup
else:
raise NotImplementedError
from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role
role_worker_mapping = {
Role.ActorRollout: ray.remote(ActorRolloutRefWorker),
Role.Critic: ray.remote(CriticWorker),
Role.RefPolicy: ray.remote(ActorRolloutRefWorker),
}
global_pool_id = "global_pool"
resource_pool_spec = {
global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
}
mapping = {
Role.ActorRollout: global_pool_id,
Role.Critic: global_pool_id,
Role.RefPolicy: global_pool_id,
}
resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)
trainer = RayPPOTrainerCustom(
config=config,
tokenizer=tokenizer,
role_worker_mapping=role_worker_mapping,
resource_pool_manager=resource_pool_manager,
ray_worker_group_cls=ray_worker_group_cls,
)
trainer.init_workers()
trainer.fit()
@hydra.main(config_path="config", config_name="ppo_trainer", version_base=None)
def main(config):
if not ray.is_initialized():
# this is for local ray cluster
ray.init(runtime_env={"env_vars": {"TOKENIZERS_PARALLELISM": "true", "NCCL_DEBUG": "WARN"}})
ray.get(main_task.remote(config))
if __name__ == "__main__":
main()