Files
reasoning-gym/reasoning_gym/arithmetic/leg_counting.py
Andreas Köpf c69bc5d4e6 Basic curriculum (#198)
* feat: Add optional curriculum support to dataset registration and creation
* docs: Add docstrings to create_curriculum() and register_dataset()
* feat: Add curriculum configuration classes for CurriculumExperiment
* feat: Add weight parameter to CurriculumAttributeConfig and use in DatasetSpec
* refactor: Simplify CurriculumAttributeConfig with "*" attribute level support
* test: Add unit tests for CurriculumExperiment class
* feat: Add from_yaml() method to CurriculumExperimentConfig with unit test
2025-03-07 11:22:12 +01:00

150 lines
4.3 KiB
Python

"""Leg counting task generator"""
from dataclasses import dataclass
from random import Random
from typing import Optional
from reasoning_gym.coaching.attributes import AttributeType, RangeAttributeDefinition
from reasoning_gym.coaching.base_curriculum import BaseCurriculum
from ..factory import ProceduralDataset, register_dataset
ANIMALS = {
# Animals with 0 legs
"snake": 0,
"sea slug": 0,
"jellyfish": 0,
"flatworm": 0,
"leech": 0,
# Animals with 2 legs
"chicken": 2,
"bird": 2,
"human": 2,
"duck": 2,
# Animals with 4 legs
"dog": 4,
"cat": 4,
"cow": 4,
"horse": 4,
"lion": 4,
"elephant": 4,
"giraffe": 4,
"tiger": 4,
"deer": 4,
"sheep": 4,
# Animals with 5 legs
"starfish": 5,
# Animals with 6 legs
"insect": 6,
"ant": 6,
"butterfly": 6,
"beetle": 6,
"bee": 6,
"wasp": 6,
"grasshopper": 6,
"cricket": 6,
"cockroach": 6,
"praying mantis": 6,
"firefly": 6,
# Animals with 8 legs
"spider": 8,
"scorpion": 8,
# Animals with 10 legs
"crab": 10,
"lobster": 10,
"shrimp": 10,
# Animals with 14 legs
"woodlouse": 14,
}
QUESTION_TEMPLATE = """Your task is to count how many legs there are in total when given a list of animals.
Now, how many legs are there in total if you have {animals}?
"""
@dataclass
class LegCountingConfig:
"""Configuration for leg counting task generation"""
min_animals: int = 3 # Minimum number of animals in problem
max_animals: int = 10 # Maximum number of animals
max_instances: int = 15 # Maximum instances of each animal
seed: Optional[int] = None
size: int = 500 # Virtual dataset size
def validate(self) -> None:
"""Validate configuration parameters"""
assert self.min_animals > 0, "min_animals must be positive"
assert self.max_animals >= self.min_animals, "max_animals must be >= min_animals"
assert self.max_instances > 0, "max_instances must be positive"
class LegCountingDataset(ProceduralDataset):
"""Generates leg counting arithmetic tasks"""
def __init__(self, config: LegCountingConfig):
super().__init__(config=config, seed=config.seed, size=config.size)
def _generate_animals(self, rng: Random) -> dict[str, int]:
"""Generate a random set of animals and their counts"""
num_types = rng.randint(self.config.min_animals, self.config.max_animals)
animals = {}
# Select random animals
selected_animals = rng.sample(list(ANIMALS.keys()), num_types)
for animal in selected_animals:
count = rng.randint(1, self.config.max_instances)
animals[animal] = count
return animals
def __getitem__(self, idx: int) -> dict:
"""Generate a single leg counting task"""
rng = Random(self.seed + idx)
# Generate random animals and their counts
animals = self._generate_animals(rng)
# Calculate total legs
total_legs = sum(count * ANIMALS[animal] for animal, count in animals.items())
# Format animal counts for question
animal_list = []
for animal, count in animals.items():
animal_list.append(f"{count} {animal}{'s' if count > 1 else ''}")
return {
"question": QUESTION_TEMPLATE.format(animals=", ".join(animal_list)),
"answer": str(total_legs),
"metadata": {
"difficulty": {
"num_animals": len(animals),
},
"animals": animals,
"total_legs": total_legs,
},
}
class LegCountingCurriculum(BaseCurriculum):
def __init__(self):
super().__init__(LegCountingCurriculum.__name__, LegCountingConfig)
# Define attributes
self._define_attributes(
RangeAttributeDefinition(
name="num_animals",
levels=list(range(1, 20)),
default_level=0, # Start with 2 terms
description="Number of animals in question",
attr_type=AttributeType.APPEND,
min_value=1, # Ensure at least 1 animal
lower_field_name="min_animals",
upper_field_name="max_animals",
),
)
register_dataset("leg_counting", LegCountingDataset, LegCountingConfig, LegCountingCurriculum)