1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00

refactor genetic algorithms to extend from same class

This commit is contained in:
Jin Yong Yoo
2020-07-25 13:45:45 -04:00
parent 9d3c068db4
commit 1a92d70457
8 changed files with 240 additions and 303 deletions

View File

@@ -1,11 +1,4 @@
"""Reimplementation of search method from Generating Natural Language
Adversarial Examples by Alzantot et.
al `<arxiv.org/abs/1804.07998>`_
`<github.com/nesl/nlp_adversarial_examples>`_
"""
# from copy import deepcopy
from abc import ABC, abstractmethod
import numpy as np
import torch
@@ -15,8 +8,9 @@ from textattack.search_methods import PopulationBasedSearch, PopulationMember
from textattack.shared.validators import transformation_consists_of_word_swaps
class GeneticAlgorithm(PopulationBasedSearch):
"""Attacks a model with word substiutitions using a genetic algorithm.
class GeneticAlgorithm(PopulationBasedSearch, ABC):
"""Base class for attacking a model with word substiutitions using a
genetic algorithm.
Args:
pop_size (int): The population size. Defaults to 20.
@@ -49,15 +43,23 @@ class GeneticAlgorithm(PopulationBasedSearch):
# internal flag to indicate if search should end immediately
self._search_over = False
def _perturb(self, pop_member, original_result):
"""Perturb `pop_member` in-place.
@abstractmethod
def _modify_population_member(self, pop_member, new_text, new_result, word_idx):
"""Modify `pop_member` by returning a new copy with `new_text`,
`new_result`, and `num_replacements_per_word` altered appropriately for
given `word_idx`"""
raise NotImplementedError()
def _perturb(self, pop_member, original_result, index=None):
"""Perturb `pop_member` and return it. Replaces a word at a random
(unless `index` is specified) in `pop_member`.
Replaces a word at a random in `pop_member` with replacement word that maximizes increase in score.
Args:
pop_member (PopulationMember): The population member being perturbed.
original_result (GoalFunctionResult): Result of original sample being attacked
index (int): Index of word to perturb.
Returns:
`True` if perturbation occurred. `False` if not.
Perturbed `PopulationMember`
"""
num_words = pop_member.num_replacements_per_word.shape[0]
num_replacements_per_word = np.copy(pop_member.num_replacements_per_word)
@@ -66,10 +68,13 @@ class GeneticAlgorithm(PopulationBasedSearch):
return False
iterations = 0
while iterations < non_zero_indices:
w_select_probs = num_replacements_per_word / np.sum(
num_replacements_per_word
)
idx = np.random.choice(num_words, 1, p=w_select_probs)[0]
if index:
idx = index
else:
w_select_probs = num_replacements_per_word / np.sum(
num_replacements_per_word
)
idx = np.random.choice(num_words, 1, p=w_select_probs)[0]
transformed_texts = self.get_transformations(
pop_member.attacked_text,
@@ -91,19 +96,35 @@ class GeneticAlgorithm(PopulationBasedSearch):
)
if len(diff_scores) and diff_scores.max() > 0:
idx_with_max_score = diff_scores.argmax()
pop_member.attacked_text = transformed_texts[idx_with_max_score]
pop_member.results = new_results[idx_with_max_score]
pop_member.num_replacements_per_word[idx] = 0
return True
pop_member = self._modify_population_member(
pop_member,
transformed_texts[idx_with_max_score],
new_results[idx_with_max_score],
idx,
)
return pop_member
num_replacements_per_word[idx] = 0
iterations += 1
return False
return pop_member
@abstractmethod
def _crossover_operation(self, pop_member1, pop_member2):
"""Actual operation for generating crossover between pop_member1 and
pop_member2.
Args:
pop_member1 (PopulationMember): The first population member.
pop_member2 (PopulationMember): The second population member.
Returns:
Tuple of `AttackedText` and `np.array` for new text and its corresponding `num_replacements_per_word`.
"""
raise NotImplementedError()
def _crossover(self, pop_member1, pop_member2, original_text):
"""Generates a crossover between pop_member1 and pop_member2.
If the child fails to satisfy the constraits, we re-try crossover for a fix number of times,
If the child fails to satisfy the constraints, we re-try crossover for a fix number of times,
before taking one of the parents at random as the resulting child.
Args:
pop_member1 (PopulationMember): The first population member.
@@ -114,30 +135,18 @@ class GeneticAlgorithm(PopulationBasedSearch):
"""
x1_text = pop_member1.attacked_text
x2_text = pop_member2.attacked_text
x2_words = x2_text.words
num_tries = 0
passed_constraints = False
while num_tries < self.max_crossover_retries + 1:
indices_to_replace = []
words_to_replace = []
num_replacements_per_word = np.copy(pop_member1.num_replacements_per_word)
for i in range(len(x1_text.words)):
if np.random.uniform() < 0.5:
indices_to_replace.append(i)
words_to_replace.append(x2_words[i])
num_replacements_per_word[
i
] = pop_member2.num_replacements_per_word[i]
new_text = x1_text.replace_words_at_indices(
indices_to_replace, words_to_replace
new_text, num_replacements_per_word = self._crossover_operation(
pop_member1, pop_member2
)
indices_to_replace = set(indices_to_replace)
replaced_indices = new_text.attack_attrs["newly_modified_indices"]
new_text.attack_attrs["modified_indices"] = (
x1_text.attack_attrs["modified_indices"] - indices_to_replace
) | (x2_text.attack_attrs["modified_indices"] & indices_to_replace)
x1_text.attack_attrs["modified_indices"] - replaced_indices
) | (x2_text.attack_attrs["modified_indices"] & replaced_indices)
if "last_transformation" in x1_text.attack_attrs:
new_text.attack_attrs["last_transformation"] = x1_text.attack_attrs[
@@ -179,10 +188,11 @@ class GeneticAlgorithm(PopulationBasedSearch):
new_results, self._search_over = self.get_goal_results([new_text])
return PopulationMember(
new_text,
new_results[0],
result=new_results[0],
num_replacements_per_word=num_replacements_per_word,
)
@abstractmethod
def _initialize_population(self, initial_result, pop_size):
"""
Initialize a population of size `pop_size` with `initial_result`
@@ -192,45 +202,17 @@ class GeneticAlgorithm(PopulationBasedSearch):
Returns:
population as `list[PopulationMember]`
"""
words = initial_result.attacked_text.words
num_replacements_per_word = np.zeros(len(words))
transformed_texts = self.get_transformations(
initial_result.attacked_text, original_text=initial_result.attacked_text
)
for transformed_text in transformed_texts:
diff_idx = next(
iter(transformed_text.attack_attrs["newly_modified_indices"])
)
num_replacements_per_word[diff_idx] += 1
# Just b/c there are no replacements now doesn't mean we never want to select the word for perturbation
# Therefore, we give small non-zero probability for words with no replacements
# Epsilon is some small number to approximately assign small probability
min_num_candidates = np.amin(num_replacements_per_word)
epsilon = max(1, int(min_num_candidates * 0.1))
for i in range(len(num_replacements_per_word)):
num_replacements_per_word[i] = max(num_replacements_per_word[i], epsilon)
population = []
for _ in range(pop_size):
pop_member = PopulationMember(
initial_result.attacked_text,
initial_result,
num_replacements_per_word=np.copy(num_replacements_per_word),
)
# Perturb `pop_member` in-place
self._perturb(pop_member, initial_result)
population.append(pop_member)
return population
raise NotImplementedError()
def _perform_search(self, initial_result):
self._search_over = False
population = self._initialize_population(initial_result, self.pop_size)
pop_size = len(population)
current_score = initial_result.score
for i in range(self.max_iters):
population = sorted(population, key=lambda x: x.result.score, reverse=True)
if (
self._search_over
or population[0].result.goal_status
@@ -247,24 +229,20 @@ class GeneticAlgorithm(PopulationBasedSearch):
logits = ((-pop_scores) / self.temp).exp()
select_probs = (logits / logits.sum()).cpu().numpy()
parent1_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
parent2_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
parent1_idx = np.random.choice(pop_size, size=pop_size - 1, p=select_probs)
parent2_idx = np.random.choice(pop_size, size=pop_size - 1, p=select_probs)
children = []
for idx in range(self.pop_size - 1):
for idx in range(pop_size - 1):
child = self._crossover(
population[parent1_idx[idx]],
population[parent2_idx[idx]],
initial_result.attacked_text,
initial_result,
)
if self._search_over:
break
self._perturb(child, initial_result)
child = self._perturb(child, initial_result)
children.append(child)
# We need two `search_over` checks b/c value might change both in