mirror of
https://github.com/QData/TextAttack.git
synced 2021-10-13 00:05:06 +03:00
fix crossover constraint checking
This commit is contained in:
@@ -19,17 +19,38 @@ class GeneticAlgorithm(SearchMethod):
|
||||
Attacks a model with word substiutitions using a genetic algorithm.
|
||||
|
||||
Args:
|
||||
pop_size (:obj:`int`, optional): The population size. Defauls to 20.
|
||||
max_iters (:obj:`int`, optional): The maximum number of iterations to use. Defaults to 50.
|
||||
pop_size (int): The population size. Defaults to 20.
|
||||
max_iters (int): The maximum number of iterations to use. Defaults to 50.
|
||||
temp (float): Temperature for softmax function used to normalize probability dist when sampling parents.
|
||||
Higher temperature increases the sensitivity to lower probability candidates.
|
||||
give_up_if_no_improvement (bool): If True, stop the search early if no candidate that improves the score is found.
|
||||
max_crossover_retries (int): Maximum number of crossover retries if resulting child fails to pass the constraints.
|
||||
Setting it to 0 means we immediately take one of the parents at random as the child.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, pop_size=20, max_iters=50, temp=0.3, give_up_if_no_improvement=False
|
||||
self,
|
||||
pop_size=20,
|
||||
max_iters=50,
|
||||
temp=0.3,
|
||||
give_up_if_no_improvement=False,
|
||||
max_crossover_retries=20,
|
||||
):
|
||||
self.max_iters = max_iters
|
||||
self.pop_size = pop_size
|
||||
self.temp = temp
|
||||
self.give_up_if_no_improvement = give_up_if_no_improvement
|
||||
self.max_crossover_retries = max_crossover_retries
|
||||
|
||||
# internal flag to indicate if search should end immediately
|
||||
self._search_over = False
|
||||
|
||||
def __call__(self, initial_result):
|
||||
if not hasattr(self, "filter_transformations"):
|
||||
raise AttributeError(
|
||||
"Search Method must have access to filter_transformations method"
|
||||
)
|
||||
return super(GeneticAlgorithm, self).__call__(initial_result)
|
||||
|
||||
def _perturb(self, pop_member, original_result):
|
||||
"""
|
||||
@@ -59,49 +80,78 @@ class GeneticAlgorithm(SearchMethod):
|
||||
if not len(transformations):
|
||||
continue
|
||||
|
||||
new_results, search_over = self.get_goal_results(
|
||||
ransformations, self.correct_output
|
||||
new_results, self._search_over = self.get_goal_results(
|
||||
transformations, original_result.output
|
||||
)
|
||||
|
||||
if search_over:
|
||||
if self._search_over:
|
||||
break
|
||||
|
||||
diff_scores = (
|
||||
torch.Tensor([r.score for r in new_results]) - original_result.score
|
||||
)
|
||||
if len(diff_scores) and diff_scores.max() > 0:
|
||||
pop_member.attacked_text = transformations[diff_scores.argmax()]
|
||||
idx = diff_scores.argmax()
|
||||
pop_member.attacked_text = transformations[idx]
|
||||
pop_member.results = new_results[idx]
|
||||
pop_member.num_neighbors_list[rand_idx] = 0
|
||||
break
|
||||
|
||||
num_neighbors_list[rand_idx] = 0
|
||||
iterations += 1
|
||||
|
||||
def _crossover(self, pop_member1, pop_member2):
|
||||
def _crossover(self, pop_member1, pop_member2, original_result):
|
||||
"""
|
||||
Generates a crossover between pop_member1 and pop_member2.
|
||||
If the child fails to satisfy the constraits, we re-try crossover for a fix number of times,
|
||||
before taking one of the parents at random as the resulting child.
|
||||
Args:
|
||||
pop_member1 (PopulationMember): The first population member.
|
||||
pop_member2 (PopulationMember): The second population member.
|
||||
Returns:
|
||||
A population member containing the crossover.
|
||||
"""
|
||||
indices_to_replace = []
|
||||
words_to_replace = []
|
||||
x1_text = pop_member1.attacked_text
|
||||
x2_words = pop_member2.attacked_text.words
|
||||
num_neighbors_list = np.copy(pop_member1.num_neighbors_list)
|
||||
for i in range(len(x1_text.words)):
|
||||
if np.random.uniform() < 0.5:
|
||||
indices_to_replace.append(i)
|
||||
words_to_replace.append(x2_words[i])
|
||||
num_neighbors_list[i] = pop_member2.num_neighbors_list[i]
|
||||
new_text = x1_text.replace_words_at_indices(
|
||||
indices_to_replace, words_to_replace
|
||||
)
|
||||
|
||||
num_tries = 0
|
||||
passed_constraints = False
|
||||
while num_tries < self.max_crossover_retries:
|
||||
indices_to_replace = []
|
||||
words_to_replace = []
|
||||
num_neighbors_list = np.copy(pop_member1.num_neighbors_list)
|
||||
for i in range(len(x1_text.words)):
|
||||
if np.random.uniform() < 0.5:
|
||||
indices_to_replace.append(i)
|
||||
words_to_replace.append(x2_words[i])
|
||||
num_neighbors_list[i] = pop_member2.num_neighbors_list[i]
|
||||
new_text = x1_text.replace_words_at_indices(
|
||||
indices_to_replace, words_to_replace
|
||||
)
|
||||
new_text.attack_attrs["last_transformation"] = x1_text.attack_attrs[
|
||||
"last_transformation"
|
||||
]
|
||||
filtered = self.filter_transformations(
|
||||
[new_text], x1_text, original_text=original_result.attacked_text
|
||||
)
|
||||
|
||||
if filtered:
|
||||
new_text = filtered[0]
|
||||
passed_constraints = True
|
||||
break
|
||||
|
||||
num_tries += 1
|
||||
|
||||
if not passed_constraints:
|
||||
new_text = (
|
||||
pop_member1.attacked_text
|
||||
if np.random.uniform() < 0.5
|
||||
else pop_member2.attacked_text
|
||||
)
|
||||
|
||||
return PopulationMember(new_text, num_neighbors_list)
|
||||
|
||||
def _initalize_population(self, initial_result):
|
||||
def _initialize_population(self, initial_result):
|
||||
"""
|
||||
Initialize a population of texts each with one word replaced
|
||||
Args:
|
||||
@@ -115,7 +165,9 @@ class GeneticAlgorithm(SearchMethod):
|
||||
initial_result.attacked_text, original_text=initial_result.attacked_text
|
||||
)
|
||||
for transformed_text in transformations:
|
||||
diff_idx = attacked_text.first_word_diff_index(transformed_text)
|
||||
diff_idx = initial_result.attacked_text.first_word_diff_index(
|
||||
transformed_text
|
||||
)
|
||||
num_neighbors_list[diff_idx] += 1
|
||||
|
||||
population = []
|
||||
@@ -131,34 +183,23 @@ class GeneticAlgorithm(SearchMethod):
|
||||
return population
|
||||
|
||||
def _perform_search(self, initial_result):
|
||||
self._search_over = False
|
||||
population = self._initialize_population(initial_result)
|
||||
current_score = initial_result.score
|
||||
for i in range(self.max_iters):
|
||||
pop_results, search_over = self.get_goal_results(
|
||||
[pm.attacked_text for pm in pop], self.correct_output
|
||||
)
|
||||
if search_over:
|
||||
if len(pop_results) == 0:
|
||||
return population[0].result
|
||||
return max(pop_results, key=lambda x: x.score)
|
||||
|
||||
for idx, result in enumerate(pop_results):
|
||||
population[idx].result = result
|
||||
population = sorted(population, key=lambda x: -x.result.score)
|
||||
|
||||
pop_scores = torch.Tensor([r.score for r in pop_results])
|
||||
logits = ((-pop_scores) / self.temp).exp()
|
||||
select_probs = (logits / logits.sum()).cpu().numpy()
|
||||
|
||||
if population[0].result.succeeded:
|
||||
return population[0].result
|
||||
population = sorted(population, key=lambda x: x.result.score, reverse=True)
|
||||
if self._search_over or population[0].result.succeeded:
|
||||
break
|
||||
|
||||
if population[0].result.score > current_score:
|
||||
current_score = population[0].result.score
|
||||
elif self.give_up_if_no_improvement:
|
||||
break
|
||||
|
||||
best_member = population[0]
|
||||
pop_scores = torch.Tensor([pm.result.score for pm in population])
|
||||
logits = ((-pop_scores) / self.temp).exp()
|
||||
select_probs = (logits / logits.sum()).cpu().numpy()
|
||||
|
||||
parent1_idx = np.random.choice(
|
||||
self.pop_size, size=self.pop_size - 1, p=select_probs
|
||||
)
|
||||
@@ -169,12 +210,26 @@ class GeneticAlgorithm(SearchMethod):
|
||||
children = []
|
||||
for idx in range(self.pop_size - 1):
|
||||
child = self._crossover(
|
||||
population[parent1_idx[idx]], population[parent2_idx[idx]]
|
||||
population[parent1_idx[idx]],
|
||||
population[parent2_idx[idx]],
|
||||
initial_result,
|
||||
)
|
||||
|
||||
self._perturb(child, initial_result)
|
||||
if child.result is None:
|
||||
# If child.result is not computed for any reason, we compute it here.
|
||||
result, self._search_over = self.get_goal_results(
|
||||
[child.attacked_text], initial_result.output
|
||||
)
|
||||
child.result = result[0]
|
||||
children.append(child)
|
||||
|
||||
population = [best_member] + children
|
||||
if self._search_over:
|
||||
break
|
||||
if self._search_over:
|
||||
break
|
||||
|
||||
population = [population[0]] + children
|
||||
|
||||
return population[0].result
|
||||
|
||||
@@ -194,7 +249,7 @@ class PopulationMember:
|
||||
|
||||
Args:
|
||||
attacked_text: The ``AttackedText`` of the population member.
|
||||
num_neighbors_list: A list of the number of candidate neighbors list for each word.
|
||||
num_neighbors_list (numpy.array): A list of the number of candidate neighbors list for each word.
|
||||
"""
|
||||
|
||||
def __init__(self, attacked_text, num_neighbors_list, result=None):
|
||||
|
||||
Reference in New Issue
Block a user