1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00

merge in master and fix syntax errors

This commit is contained in:
Jack Morris
2020-07-03 16:01:19 -04:00
113 changed files with 1578 additions and 979 deletions

View File

@@ -10,6 +10,7 @@ from copy import deepcopy
import numpy as np
import torch
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.search_methods import SearchMethod
from textattack.shared.validators import transformation_consists_of_word_swaps
@@ -19,167 +20,209 @@ class GeneticAlgorithm(SearchMethod):
Attacks a model with word substiutitions using a genetic algorithm.
Args:
pop_size (:obj:`int`, optional): The population size. Defauls to 20.
max_iters (:obj:`int`, optional): The maximum number of iterations to use. Defaults to 50.
pop_size (int): The population size. Defaults to 20.
max_iters (int): The maximum number of iterations to use. Defaults to 50.
temp (float): Temperature for softmax function used to normalize probability dist when sampling parents.
Higher temperature increases the sensitivity to lower probability candidates.
give_up_if_no_improvement (bool): If True, stop the search early if no candidate that improves the score is found.
max_crossover_retries (int): Maximum number of crossover retries if resulting child fails to pass the constraints.
Setting it to 0 means we immediately take one of the parents at random as the child.
"""
def __init__(
self, pop_size=20, max_iters=50, temp=0.3, give_up_if_no_improvement=False
self,
pop_size=20,
max_iters=50,
temp=0.3,
give_up_if_no_improvement=False,
max_crossover_retries=20,
):
self.max_iters = max_iters
self.pop_size = pop_size
self.temp = temp
self.give_up_if_no_improvement = give_up_if_no_improvement
self.search_over = False
self.max_crossover_retries = max_crossover_retries
def _replace_at_index(self, pop_member, idx):
# internal flag to indicate if search should end immediately
self._search_over = False
def _perturb(self, pop_member, original_result):
"""
Select the best replacement for word at position (idx)
in (pop_member) to maximize score.
Replaces a word in pop_member that has not been modified in place.
Args:
pop_member: The population member being perturbed.
idx: The index at which to replace a word.
Returns:
Whether a replacement which increased the score was found.
pop_member (PopulationMember): The population member being perturbed.
original_result (GoalFunctionResult): Result of original sample being attacked
Returns: None
"""
transformations = self.get_transformations(
pop_member.attacked_text,
original_text=self.original_attacked_text,
indices_to_modify=[idx],
)
if not len(transformations):
return False
orig_result, self.search_over = self.get_goal_results(
[pop_member.attacked_text], self.correct_output
)
if self.search_over:
return False
new_x_results, self.search_over = self.get_goal_results(
transformations, self.correct_output
)
new_x_scores = torch.Tensor([r.score for r in new_x_results])
new_x_scores = new_x_scores - orig_result[0].score
if len(new_x_scores) and new_x_scores.max() > 0:
pop_member.attacked_text = transformations[new_x_scores.argmax()]
return True
return False
def _perturb(self, pop_member):
"""
Replaces a word in pop_member that has not been modified.
Args:
pop_member: The population member being perturbed.
"""
x_len = pop_member.neighbors_len.shape[0]
neighbors_len = deepcopy(pop_member.neighbors_len)
non_zero_indices = np.sum(np.sign(pop_member.neighbors_len))
num_words = pop_member.num_candidates_per_word.shape[0]
num_candidates_per_word = np.copy(pop_member.num_candidates_per_word)
non_zero_indices = np.count_nonzero(num_candidates_per_word)
if non_zero_indices == 0:
return
iterations = 0
while iterations < non_zero_indices and not self.search_over:
w_select_probs = neighbors_len / np.sum(neighbors_len)
rand_idx = np.random.choice(x_len, 1, p=w_select_probs)[0]
if self._replace_at_index(pop_member, rand_idx):
pop_member.neighbors_len[rand_idx] = 0
while iterations < non_zero_indices:
w_select_probs = num_candidates_per_word / np.sum(num_candidates_per_word)
rand_idx = np.random.choice(num_words, 1, p=w_select_probs)[0]
transformations = self.get_transformations(
pop_member.attacked_text,
original_text=original_result.attacked_text,
indices_to_modify=[rand_idx],
)
if not len(transformations):
iterations += 1
continue
new_results, self._search_over = self.get_goal_results(transformations)
if self._search_over:
break
neighbors_len[rand_idx] = 0
diff_scores = (
torch.Tensor([r.score for r in new_results]) - pop_member.result.score
)
if len(diff_scores) and diff_scores.max() > 0:
idx = diff_scores.argmax()
pop_member.attacked_text = transformations[idx]
pop_member.num_candidates_per_word[rand_idx] = 0
pop_member.results = new_results[idx]
break
num_candidates_per_word[rand_idx] = 0
iterations += 1
def _generate_population(self, neighbors_len, initial_result):
"""
Generates a population of texts each with one word replaced
Args:
neighbors_len: A list of the number of candidate neighbors for each word.
initial_result: The result to instantiate the population with
Returns:
The population.
"""
pop = []
for _ in range(self.pop_size):
pop_member = PopulationMember(
self.original_attacked_text, deepcopy(neighbors_len), initial_result
)
self._perturb(pop_member)
pop.append(pop_member)
return pop
def _crossover(self, pop_member1, pop_member2):
def _crossover(self, pop_member1, pop_member2, original_result):
"""
Generates a crossover between pop_member1 and pop_member2.
If the child fails to satisfy the constraits, we re-try crossover for a fix number of times,
before taking one of the parents at random as the resulting child.
Args:
pop_member1: The first population member.
pop_member2: The second population member.
pop_member1 (PopulationMember): The first population member.
pop_member2 (PopulationMember): The second population member.
Returns:
A population member containing the crossover.
"""
indices_to_replace = []
words_to_replace = []
x1_text = pop_member1.attacked_text
x2_words = pop_member2.attacked_text.words
new_neighbors_len = deepcopy(pop_member1.neighbors_len)
for i in range(len(x1_text.words)):
if np.random.uniform() < 0.5:
indices_to_replace.append(i)
words_to_replace.append(x2_words[i])
new_neighbors_len[i] = pop_member2.neighbors_len[i]
new_text = x1_text.replace_words_at_indices(
indices_to_replace, words_to_replace
)
return PopulationMember(new_text, deepcopy(new_neighbors_len))
x2_text = pop_member2.attacked_text
x2_words = x2_text.words
def _get_neighbors_len(self, attacked_text):
num_tries = 0
passed_constraints = False
while num_tries < self.max_crossover_retries + 1:
indices_to_replace = []
words_to_replace = []
num_candidates_per_word = np.copy(pop_member1.num_candidates_per_word)
for i in range(len(x1_text.words)):
if np.random.uniform() < 0.5:
indices_to_replace.append(i)
words_to_replace.append(x2_words[i])
num_candidates_per_word[i] = pop_member2.num_candidates_per_word[i]
new_text = x1_text.replace_words_at_indices(
indices_to_replace, words_to_replace
)
if "last_transformation" in x1_text.attack_attrs:
new_text.attack_attrs["last_transformation"] = x1_text.attack_attrs[
"last_transformation"
]
filtered = self.filter_transformations(
[new_text], x1_text, original_text=original_result.attacked_text
)
elif "last_transformation" in x2_text.attack_attrs:
new_text.attack_attrs["last_transformation"] = x2_text.attack_attrs[
"last_transformation"
]
filtered = self.filter_transformations(
[new_text], x1_text, original_text=original_result.attacked_text
)
else:
# In this case, neither x_1 nor x_2 has been transformed,
# meaning that new_text == original_text
filtered = [new_text]
if filtered:
new_text = filtered[0]
passed_constraints = True
break
num_tries += 1
if not passed_constraints:
# If we cannot find a child that passes the constraints,
# we just randomly pick one of the parents to be the child for the next iteration.
new_text = (
pop_member1.attacked_text
if np.random.uniform() < 0.5
else pop_member2.attacked_text
)
new_results, self._search_over = self.get_goal_results([new_text])
return PopulationMember(new_text, num_candidates_per_word, new_results[0])
def _initialize_population(self, initial_result):
"""
Generates this neighbors_len list
Initialize a population of texts each with one word replaced
Args:
attacked_text: The original text
initial_result (GoalFunctionResult): The result to instantiate the population with
Returns:
A list of number of candidate neighbors for each word
The population.
"""
words = attacked_text.words
neighbors_list = [[] for _ in range(len(words))]
words = initial_result.attacked_text.words
num_candidates_per_word = np.zeros(len(words))
transformations = self.get_transformations(
attacked_text, original_text=self.original_attacked_text
initial_result.attacked_text, original_text=initial_result.attacked_text
)
for transformed_text in transformations:
diff_idx = attacked_text.first_word_diff_index(transformed_text)
neighbors_list[diff_idx].append(transformed_text.words[diff_idx])
neighbors_list = [np.array(x) for x in neighbors_list]
neighbors_len = np.array([len(x) for x in neighbors_list])
return neighbors_len
diff_idx = initial_result.attacked_text.first_word_diff_index(
transformed_text
)
num_candidates_per_word[diff_idx] += 1
# Just b/c there are no candidates now doesn't mean we never want to select the word for perturbation
# Therefore, we give small non-zero probability for words with no candidates
# Epsilon is some small number to approximately assign 1% probability
num_total_candidates = np.sum(num_candidates_per_word)
epsilon = max(1, int(num_total_candidates * 0.01))
for i in range(len(num_candidates_per_word)):
if num_candidates_per_word[i] == 0:
num_candidates_per_word[i] = epsilon
population = []
for _ in range(self.pop_size):
pop_member = PopulationMember(
initial_result.attacked_text,
np.copy(num_candidates_per_word),
initial_result,
)
# Perturb `pop_member` in-place
self._perturb(pop_member, initial_result)
population.append(pop_member)
return population
def _perform_search(self, initial_result):
self.original_attacked_text = initial_result.attacked_text
self.correct_output = initial_result.output
neighbors_len = self._get_neighbors_len(self.original_attacked_text)
pop = self._generate_population(neighbors_len, initial_result)
cur_score = initial_result.score
self._search_over = False
population = self._initialize_population(initial_result)
current_score = initial_result.score
for i in range(self.max_iters):
pop_results, self.search_over = self.get_goal_results(
[pm.attacked_text for pm in pop], self.correct_output
)
if self.search_over:
if not len(pop_results):
return pop[0].result
return max(pop_results, key=lambda x: x.score)
for idx, result in enumerate(pop_results):
pop[idx].result = pop_results[idx]
pop = sorted(pop, key=lambda x: -x.result.score)
population = sorted(population, key=lambda x: x.result.score, reverse=True)
if (
self._search_over
or population[0].result.goal_status
== GoalFunctionResultStatus.SUCCEEDED
):
break
pop_scores = torch.Tensor([r.score for r in pop_results])
logits = ((-pop_scores) / self.temp).exp()
select_probs = (logits / logits.sum()).cpu().numpy()
if pop[0].result.succeeded:
return pop[0].result
if pop[0].result.score > cur_score:
cur_score = pop[0].result.score
if population[0].result.score > current_score:
current_score = population[0].result.score
elif self.give_up_if_no_improvement:
break
elite = [pop[0]]
pop_scores = torch.Tensor([pm.result.score for pm in population])
logits = ((-pop_scores) / self.temp).exp()
select_probs = (logits / logits.sum()).cpu().numpy()
parent1_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
@@ -187,16 +230,27 @@ class GeneticAlgorithm(SearchMethod):
self.pop_size, size=self.pop_size - 1, p=select_probs
)
children = [
self._crossover(pop[parent1_idx[idx]], pop[parent2_idx[idx]])
for idx in range(self.pop_size - 1)
]
for c in children:
self._perturb(c)
children = []
for idx in range(self.pop_size - 1):
child = self._crossover(
population[parent1_idx[idx]],
population[parent2_idx[idx]],
initial_result,
)
if self._search_over:
break
pop = elite + children
self._perturb(child, initial_result)
children.append(child)
return pop[0].result
# We need two `search_over` checks b/c value might change both in
# `crossover` method and `perturb` method.
if self._search_over:
break
population = [population[0]] + children
return population[0].result
def check_transformation_compatibility(self, transformation):
"""
@@ -214,10 +268,10 @@ class PopulationMember:
Args:
attacked_text: The ``AttackedText`` of the population member.
neighbors_len: A list of the number of candidate neighbors list for each word.
num_candidates_per_word (numpy.array): A list of the number of candidate neighbors list for each word.
"""
def __init__(self, attacked_text, neighbors_len, result=None):
def __init__(self, attacked_text, num_candidates_per_word, result):
self.attacked_text = attacked_text
self.neighbors_len = neighbors_len
self.num_candidates_per_word = num_candidates_per_word
self.result = result