import textattack import torch def model_predict(model, inputs): try: return try_model_predict(model, inputs) except Exception as e: textattack.shared.utils.logger.warn(f'Failed to predict with model {model}. Check tokenizer configuration.') raise e def try_model_predict(model, inputs): if isinstance(inputs[0], dict): # If ``inputs`` is a list of dicts, we convert them to a single dict # (now of tensors) and pass to the model as kwargs. # Convert list of dicts to dict of lists. input_dict = {k: [_dict[k] for _dict in inputs] for k in inputs[0]} # Convert list keys to tensors. for key in input_dict: input_dict[key] = pad_lists(input_dict[key]) input_dict[key] = torch.tensor(input_dict[key]).to(textattack.shared.utils.device) # Do inference using keys as kwargs. outputs = model(**input_dict) else: # If ``inputs`` is not a list of dicts, it's either a list of tuples # (model takes multiple inputs) or a list of ID lists (where the model # takes a single input). In this case, we'll do our best to figure out # the proper input to the model, anyway. input_dim = get_list_dim(inputs) if input_dim == 2: # For models where the input is a single vector. inputs = pad_lists(inputs) inputs = torch.tensor(inputs).to(textattack.shared.utils.device) outputs = model(inputs) elif input_dim == 3: # For models that take multiple vectors per input. inputs = map(list, zip(*inputs)) inputs = map(pad_lists, inputs) inputs = (torch.tensor(x).to(textattack.shared.utils.device) for x in inputs) outputs = model(*inputs) else: raise TypeError(f'Error: malformed inputs.ndim ({input_dim})') # If `outputs` is a tuple, take the first argument. if isinstance(outputs, tuple): outputs = outputs[0] return outputs def get_list_dim(ids): if isinstance(ids, tuple) or isinstance(ids, list) or isinstance(ids, torch.Tensor): return 1 + get_list_dim(ids[0]) else: return 0 def pad_lists(lists, pad_token=0): """ Pads lists with trailing zeros to make them all the same length. """ max_list_len = max(len(l) for l in lists) for i in range(len(lists)): lists[i] += ([pad_token] * (max_list_len - len(lists[i]))) return lists