""" A command line parser to run an attack from user specifications. """ import textattack import time import tqdm import os import datetime from .run_attack_args_helper import * logger = textattack.shared.utils.get_logger() def run(args): # Only use one GPU, if we have one. if 'CUDA_VISIBLE_DEVICES' not in os.environ: os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Disable tensorflow logs, except in the case of an error. if 'TF_CPP_MIN_LOG_LEVEL' not in os.environ: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Cache TensorFlow Hub models here, if not otherwise specified. if 'TFHUB_CACHE_DIR' not in os.environ: os.environ['TFHUB_CACHE_DIR'] = os.path.expanduser('~/.cache/tensorflow-hub') if args.checkpoint_resume: # Override current args with checkpoint args resume_checkpoint = parse_checkpoint_from_args(args) args = resume_checkpoint.args num_examples_offset = resume_checkpoint.dataset_offset num_examples = resume_checkpoint.num_remaining_attacks checkpoint_resume = True logger.info('Recovered from previously saved checkpoint at {}'.format(resume_checkpoint.datetime)) print(resume_checkpoint, '\n') else: num_examples_offset = args.num_examples_offset num_examples = args.num_examples checkpoint_resume = False start_time = time.time() # Models and Attack goal_function, attack = parse_goal_function_and_attack_from_args(args) print(attack, '\n') # Logger if checkpoint_resume: attack_log_manager = resume_checkpoint.log_manager else: attack_log_manager = parse_logger_from_args(args) load_time = time.time() print(f'Load time: {load_time - start_time}s') if args.interactive: print('Running in interactive mode') print('----------------------------') while True: print('Enter a sentence to attack or "q" to quit:') text = input() if text == 'q': break if not text: continue tokenized_text = textattack.shared.tokenized_text.TokenizedText(text, goal_function.model.tokenizer) result = goal_function.get_result(tokenized_text, goal_function.get_output(tokenized_text)) print('Attacking...') result = next(attack.attack_dataset([(text, result.output)])) print(result.__str__(color_method='stdout')) else: # Not interactive? Use default dataset. if args.model in DATASET_BY_MODEL: data = DATASET_BY_MODEL[args.model](offset=num_examples_offset) else: raise ValueError(f'Error: unsupported model {args.model}') pbar = tqdm.tqdm(total=num_examples, smoothing=0) if checkpoint_resume: num_results = resume_checkpoint.results_count num_failures = resume_checkpoint.num_failed_attacks num_successes = resume_checkpoint.num_successful_attacks else: num_results = 0 num_failures = 0 num_successes = 0 for result in attack.attack_dataset(data, num_examples=num_examples, shuffle=args.shuffle, attack_n=args.attack_n): attack_log_manager.log_result(result) if not args.disable_stdout: print('\n') if (not args.attack_n) or (not isinstance(result, textattack.attack_results.SkippedAttackResult)): pbar.update(1) num_results += 1 if type(result) == textattack.attack_results.SuccessfulAttackResult: num_successes += 1 if type(result) == textattack.attack_results.FailedAttackResult: num_failures += 1 pbar.set_description('[Succeeded / Failed / Total] {} / {} / {}'.format(num_successes, num_failures, num_results)) if args.checkpoint_interval and num_results % args.checkpoint_interval == 0: chkpt_time = time.time() date_time = datetime.datetime.fromtimestamp(chkpt_time).strftime('%Y-%m-%d %H:%M:%S') print('\n\n' + '=' * 100) logger.info('Saving checkpoint at {} after {} attacks.'.format(date_time, num_results)) print('=' * 100 + '\n') checkpoint = textattack.shared.CheckPoint(chkpt_time, args, attack_log_manager) checkpoint.save() pbar.close() print() # Enable summary stdout if args.disable_stdout: attack_log_manager.enable_stdout() attack_log_manager.log_summary() attack_log_manager.flush() print() finish_time = time.time() print(f'Attack time: {time.time() - load_time}s') if __name__ == '__main__': run(get_args())