1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/constraints/semantics/sentence_encoders/thought_vector.py
2020-07-01 11:47:50 -04:00

45 lines
1.5 KiB
Python

import functools
import torch
from textattack.shared import AttackedText, WordEmbedding, utils
from .sentence_encoder import SentenceEncoder
class ThoughtVector(SentenceEncoder):
"""
A constraint on the distance between two sentences' thought vectors.
Args:
word_embedding (str): The word embedding to use
min_cos_sim: the minimum cosine similarity between thought vectors
max_mse_dist: the maximum euclidean distance between thought vectors
"""
def __init__(self, embedding_type="paragramcf", **kwargs):
self.word_embedding = WordEmbedding(embedding_type)
self.embedding_type = embedding_type
super().__init__(**kwargs)
@functools.lru_cache(maxsize=2 ** 10)
def _get_thought_vector(self, text):
""" Sums the embeddings of all the words in ``text`` into a
"thought vector".
"""
embeddings = []
for word in utils.words_from_text(text):
embedding = self.word_embedding[word]
if embedding is not None: # out-of-vocab words do not have embeddings
embeddings.append(embedding)
embeddings = torch.tensor(embeddings)
return torch.mean(embeddings, dim=0)
def encode(self, raw_text_list):
return torch.stack([self._get_thought_vector(text) for text in raw_text_list])
def extra_repr_keys(self):
"""Set the extra representation of the constraint using these keys.
"""
return ["embedding_type"] + super().extra_repr_keys()