1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/goal_functions/goal_function.py
2020-11-08 17:47:18 -05:00

200 lines
7.4 KiB
Python

"""
goal_function: Goal functions determine if an attack has been successful.
==============================================================================
"""
from abc import ABC, abstractmethod
import lru
from textattack.goal_function_results.goal_function_result import (
GoalFunctionResultStatus,
)
from textattack.shared import validators
from textattack.shared.utils import default_class_repr
class GoalFunction(ABC):
"""Evaluates how well a perturbed attacked_text object is achieving a
specified goal.
Args:
model_wrapper: The model used for evaluation.
maximizable: Whether the goal function is maximizable, as opposed to a boolean result
of success or failure.
query_budget (float): The maximum number of model queries allowed.
model_cache_size (int): The maximum number of items to keep in the model
results cache at once
"""
def __init__(
self,
model_wrapper,
maximizable=False,
use_cache=True,
query_budget=float("inf"),
model_cache_size=2 ** 20,
):
validators.validate_model_goal_function_compatibility(
self.__class__, model_wrapper.model.__class__
)
self.model = model_wrapper
self.maximizable = maximizable
self.use_cache = use_cache
self.query_budget = query_budget
if self.use_cache:
self._call_model_cache = lru.LRU(model_cache_size)
else:
self._call_model_cache = None
def clear_cache(self):
if self.use_cache:
self._call_model_cache.clear()
def init_attack_example(self, attacked_text, ground_truth_output):
"""Called before attacking ``attacked_text`` to 'reset' the goal
function and set properties for this example."""
self.initial_attacked_text = attacked_text
self.ground_truth_output = ground_truth_output
self.num_queries = 0
result, _ = self.get_result(attacked_text, check_skip=True)
return result, _
def get_output(self, attacked_text):
"""Returns output for display based on the result of calling the
model."""
return self._get_displayed_output(self._call_model([attacked_text])[0])
def get_result(self, attacked_text, **kwargs):
"""A helper method that queries ``self.get_results`` with a single
``AttackedText`` object."""
results, search_over = self.get_results([attacked_text], **kwargs)
result = results[0] if len(results) else None
return result, search_over
def get_results(self, attacked_text_list, check_skip=False):
"""For each attacked_text object in attacked_text_list, returns a
result consisting of whether or not the goal has been achieved, the
output for display purposes, and a score.
Additionally returns whether the search is over due to the query
budget.
"""
results = []
if self.query_budget < float("inf"):
queries_left = self.query_budget - self.num_queries
attacked_text_list = attacked_text_list[:queries_left]
self.num_queries += len(attacked_text_list)
model_outputs = self._call_model(attacked_text_list)
for attacked_text, raw_output in zip(attacked_text_list, model_outputs):
displayed_output = self._get_displayed_output(raw_output)
goal_status = self._get_goal_status(
raw_output, attacked_text, check_skip=check_skip
)
goal_function_score = self._get_score(raw_output, attacked_text)
results.append(
self._goal_function_result_type()(
attacked_text,
raw_output,
displayed_output,
goal_status,
goal_function_score,
self.num_queries,
self.ground_truth_output,
)
)
return results, self.num_queries == self.query_budget
def _get_goal_status(self, model_output, attacked_text, check_skip=False):
should_skip = check_skip and self._should_skip(model_output, attacked_text)
if should_skip:
return GoalFunctionResultStatus.SKIPPED
if self.maximizable:
return GoalFunctionResultStatus.MAXIMIZING
if self._is_goal_complete(model_output, attacked_text):
return GoalFunctionResultStatus.SUCCEEDED
return GoalFunctionResultStatus.SEARCHING
@abstractmethod
def _is_goal_complete(self, model_output, attacked_text):
raise NotImplementedError()
def _should_skip(self, model_output, attacked_text):
return self._is_goal_complete(model_output, attacked_text)
@abstractmethod
def _get_score(self, model_output, attacked_text):
raise NotImplementedError()
def _get_displayed_output(self, raw_output):
return raw_output
@abstractmethod
def _goal_function_result_type(self):
"""Returns the class of this goal function's results."""
raise NotImplementedError()
@abstractmethod
def _process_model_outputs(self, inputs, outputs):
"""Processes and validates a list of model outputs.
This is a task-dependent operation. For example, classification
outputs need to make sure they have a softmax applied.
"""
raise NotImplementedError()
def _call_model_uncached(self, attacked_text_list):
"""Queries model and returns outputs for a list of AttackedText
objects."""
if not len(attacked_text_list):
return []
inputs = [at.tokenizer_input for at in attacked_text_list]
outputs = self.model(inputs)
assert len(inputs) == len(
outputs
), f"Got {len(outputs)} outputs for {len(inputs)} inputs"
return self._process_model_outputs(attacked_text_list, outputs)
def _call_model(self, attacked_text_list):
"""Gets predictions for a list of ``AttackedText`` objects.
Gets prediction from cache if possible. If prediction is not in
the cache, queries model and stores prediction in cache.
"""
if not self.use_cache:
return self._call_model_uncached(attacked_text_list)
else:
uncached_list = []
for text in attacked_text_list:
if text in self._call_model_cache:
# Re-write value in cache. This moves the key to the top of the
# LRU cache and prevents the unlikely event that the text
# is overwritten when we store the inputs from `uncached_list`.
self._call_model_cache[text] = self._call_model_cache[text]
else:
uncached_list.append(text)
uncached_list = [
text
for text in attacked_text_list
if text not in self._call_model_cache
]
outputs = self._call_model_uncached(uncached_list)
for text, output in zip(uncached_list, outputs):
self._call_model_cache[text] = output
all_outputs = [self._call_model_cache[text] for text in attacked_text_list]
return all_outputs
def extra_repr_keys(self):
attrs = []
if self.query_budget < float("inf"):
attrs.append("query_budget")
if self.maximizable:
attrs.append("maximizable")
return attrs
__repr__ = __str__ = default_class_repr