mirror of
https://github.com/QData/TextAttack.git
synced 2021-10-13 00:05:06 +03:00
184 lines
5.9 KiB
Python
184 lines
5.9 KiB
Python
"""
|
|
A command line parser to run an attack from user specifications.
|
|
"""
|
|
|
|
from collections import deque
|
|
import os
|
|
import time
|
|
|
|
import torch
|
|
import tqdm
|
|
|
|
import textattack
|
|
|
|
from .attack_args_helpers import *
|
|
|
|
logger = textattack.shared.logger
|
|
|
|
|
|
def set_env_variables(gpu_id):
|
|
# Set sharing strategy to file_system to avoid file descriptor leaks
|
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
|
# Only use one GPU, if we have one.
|
|
textattack.shared.utils.set_device(gpu_id)
|
|
|
|
# Disable tensorflow logs, except in the case of an error.
|
|
if "TF_CPP_MIN_LOG_LEVEL" not in os.environ:
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
# Cache TensorFlow Hub models here, if not otherwise specified.
|
|
if "TFHUB_CACHE_DIR" not in os.environ:
|
|
os.environ["TFHUB_CACHE_DIR"] = os.path.expanduser("~/.cache/tensorflow-hub")
|
|
|
|
|
|
def attack_from_queue(args, in_queue, out_queue):
|
|
gpu_id = torch.multiprocessing.current_process()._identity[0] - 2
|
|
set_env_variables(gpu_id)
|
|
attack = parse_attack_from_args(args)
|
|
if gpu_id == 0:
|
|
print(attack, "\n")
|
|
while not in_queue.empty():
|
|
try:
|
|
i, text, output = in_queue.get()
|
|
results_gen = attack.attack_dataset([(text, output)])
|
|
result = next(results_gen)
|
|
out_queue.put((i, result))
|
|
except Exception as e:
|
|
out_queue.put(e)
|
|
exit()
|
|
|
|
|
|
def run(args, checkpoint=None):
|
|
pytorch_multiprocessing_workaround()
|
|
|
|
num_total_examples = args.num_examples
|
|
|
|
if args.checkpoint_resume:
|
|
num_remaining_attacks = checkpoint.num_remaining_attacks
|
|
worklist = checkpoint.worklist
|
|
worklist_tail = checkpoint.worklist_tail
|
|
logger.info(
|
|
"Recovered from checkpoint previously saved at {}".format(
|
|
checkpoint.datetime
|
|
)
|
|
)
|
|
print(checkpoint, "\n")
|
|
else:
|
|
num_remaining_attacks = num_total_examples
|
|
worklist = deque(range(0, num_total_examples))
|
|
worklist_tail = worklist[-1]
|
|
|
|
# This makes `args` a namespace that's sharable between processes.
|
|
# We could do the same thing with the model, but it's actually faster
|
|
# to let each thread have their own copy of the model.
|
|
args = torch.multiprocessing.Manager().Namespace(**vars(args))
|
|
start_time = time.time()
|
|
|
|
if args.checkpoint_resume:
|
|
attack_log_manager = checkpoint.log_manager
|
|
else:
|
|
attack_log_manager = parse_logger_from_args(args)
|
|
|
|
# We reserve the first GPU for coordinating workers.
|
|
num_gpus = torch.cuda.device_count()
|
|
|
|
dataset = parse_dataset_from_args(args)
|
|
|
|
textattack.shared.logger.info(f"Running on {num_gpus} GPUs")
|
|
load_time = time.time()
|
|
|
|
if args.interactive:
|
|
raise RuntimeError("Cannot run in parallel if --interactive set")
|
|
|
|
in_queue = torch.multiprocessing.Queue()
|
|
out_queue = torch.multiprocessing.Queue()
|
|
# Add stuff to queue.
|
|
for i in worklist:
|
|
text, output = dataset[i]
|
|
in_queue.put((i, text, output))
|
|
|
|
# Start workers.
|
|
pool = torch.multiprocessing.Pool(
|
|
num_gpus, attack_from_queue, (args, in_queue, out_queue)
|
|
)
|
|
# Log results asynchronously and update progress bar.
|
|
if args.checkpoint_resume:
|
|
num_results = checkpoint.results_count
|
|
num_failures = checkpoint.num_failed_attacks
|
|
num_successes = checkpoint.num_successful_attacks
|
|
else:
|
|
num_results = 0
|
|
num_failures = 0
|
|
num_successes = 0
|
|
pbar = tqdm.tqdm(total=num_remaining_attacks, smoothing=0)
|
|
while worklist:
|
|
result = out_queue.get(block=True)
|
|
|
|
if isinstance(result, Exception):
|
|
raise result
|
|
idx, result = result
|
|
attack_log_manager.log_result(result)
|
|
worklist.remove(idx)
|
|
if (not args.attack_n) or (
|
|
not isinstance(result, textattack.attack_results.SkippedAttackResult)
|
|
):
|
|
pbar.update()
|
|
num_results += 1
|
|
|
|
if type(result) == textattack.attack_results.SuccessfulAttackResult:
|
|
num_successes += 1
|
|
if type(result) == textattack.attack_results.FailedAttackResult:
|
|
num_failures += 1
|
|
pbar.set_description(
|
|
"[Succeeded / Failed / Total] {} / {} / {}".format(
|
|
num_successes, num_failures, num_results
|
|
)
|
|
)
|
|
else:
|
|
# worklist_tail keeps track of highest idx that has been part of worklist
|
|
# Used to get the next dataset element when attacking with `attack_n` = True.
|
|
worklist_tail += 1
|
|
try:
|
|
text, output = dataset[worklist_tail]
|
|
worklist.append(worklist_tail)
|
|
in_queue.put((worklist_tail, text, output))
|
|
except IndexError:
|
|
raise IndexError(
|
|
"Out of bounds access of dataset. Size of data is {} but tried to access index {}".format(
|
|
len(dataset), worklist_tail
|
|
)
|
|
)
|
|
|
|
if (
|
|
args.checkpoint_interval
|
|
and len(attack_log_manager.results) % args.checkpoint_interval == 0
|
|
):
|
|
new_checkpoint = textattack.shared.Checkpoint(
|
|
args, attack_log_manager, worklist, worklist_tail
|
|
)
|
|
new_checkpoint.save()
|
|
attack_log_manager.flush()
|
|
|
|
pbar.close()
|
|
print()
|
|
# Enable summary stdout.
|
|
if args.disable_stdout:
|
|
attack_log_manager.enable_stdout()
|
|
attack_log_manager.log_summary()
|
|
attack_log_manager.flush()
|
|
print()
|
|
finish_time = time.time()
|
|
textattack.shared.logger.info(f"Attack time: {time.time() - load_time}s")
|
|
|
|
|
|
def pytorch_multiprocessing_workaround():
|
|
# This is a fix for a known bug
|
|
try:
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run(get_args())
|