1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/transformations/word_swap_masked_lm.py
2020-07-29 10:26:49 -04:00

237 lines
9.5 KiB
Python

import itertools
# import numpy as np
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from textattack.shared import utils
from textattack.transformations.word_swap import WordSwap
class WordSwapMaskedLM(WordSwap):
"""Generate potential replacements for a word using BERT-Masked LM.
Based off of two papers
- "BAE: BERT-based Adversarial Examples for Text Classification" (Garg et al., 2020) https://arxiv.org/abs/2004.01970
- "BERT-ATTACK: Adversarial Attack Against BERT Using BERT" (Li et al, 2020) https://arxiv.org/abs/2004.09984
BAE simple masks the word we want to replace and selects top-K replacements predicted by the masked language model.
BERT-Attack instead performs replacement on token level. For words that are consisted of two or more sub-word tokens,
it takes the top-K replacements for seach sub-word token and produces all possible combinations of the top replacments.
Then, it selects the top-K combinations based on their perplexity calculated using the masked language model.
Choose which method to use by specifying "bae" or "bert-attack" for `method` argument.
"""
def __init__(
self,
method="bae",
masked_language_model="bert-base-uncased",
max_length=256,
max_candidates=50,
**kwargs,
):
super().__init__(**kwargs)
self.method = method
self.masked_lm_name = masked_language_model
self.max_length = max_length
self.max_candidates = max_candidates
self._lm_tokenizer = AutoTokenizer.from_pretrained(
masked_language_model, use_fast=True
)
self._language_model = AutoModelForMaskedLM.from_pretrained(
masked_language_model
)
self._language_model.to(utils.device)
self._language_model.eval()
def _encode_text(self, text):
"""Encodes ``text`` using an ``AutoTokenizer``, ``self._lm_tokenizer``.
Returns a ``dict`` where keys are strings (like 'input_ids') and
values are ``torch.Tensor``s. Moves tensors to the same device
as the language model.
"""
encoding = self._lm_tokenizer.encode_plus(
text,
max_length=self.max_length,
truncation=True,
padding="max_length",
return_tensors="pt",
)
return {k: v.to(utils.device) for k, v in encoding.items()}
def _bae_replacement_words(self, current_text, index):
"""Get replacement words for the word we want to replace using BAE
method.
Args:
current_text (AttackedText): Text we want to get replacements for.
index (int): index of word we want to replace
"""
masked_attacked_text = current_text.replace_word_at_index(
index, self._lm_tokenizer.mask_token
)
inputs = self._encode_text(masked_attacked_text.text)
ids = inputs["input_ids"].tolist()[0]
try:
# Need try-except b/c mask-token located past max_length might be truncated by tokenizer
masked_index = ids.index(self._lm_tokenizer.mask_token_id)
except ValueError:
return []
with torch.no_grad():
preds = self._language_model(**inputs)[0]
mask_token_probs = preds[0, masked_index]
topk = torch.topk(mask_token_probs, self.max_candidates)
top_ids = topk[1].tolist()
replacement_words = []
for id in top_ids:
token = self._lm_tokenizer.convert_ids_to_tokens(id)
if utils.is_one_word(token) and not check_if_subword(token):
replacement_words.append(token)
return replacement_words
def _bert_attack_replacement_words(
self, current_text, index, id_preds, masked_lm_logits,
):
"""Get replacement words for the word we want to replace using BERT-
Attack method.
Args:
current_text (AttackedText): Text we want to get replacements for.
index (int): index of word we want to replace
id_preds (torch.Tensor): N x K tensor of top-K ids for each token-position predicted by the masked language model.
N is equivalent to `self.max_length`.
masked_lm_logits (torch.Tensor): N x V tensor of the raw logits outputted by the masked language model.
N is equivlaent to `self.max_length` and V is dictionary size of masked language model.
"""
# We need to find which BPE tokens belong to the word we want to replace
masked_text = current_text.replace_word_at_index(
index, self._lm_tokenizer.mask_token
)
current_inputs = self._encode_text(masked_text.text)
current_ids = current_inputs["input_ids"].tolist()[0]
word_tokens = self._lm_tokenizer.encode(
current_text.words[index], add_special_tokens=False
)
try:
# Need try-except b/c mask-token located past max_length might be truncated by tokenizer
masked_index = current_ids.index(self._lm_tokenizer.mask_token_id)
except ValueError:
return []
# List of indices of tokens that are part of the target word
target_ids_pos = list(
range(masked_index, min(masked_index + len(word_tokens), self.max_length))
)
if not len(target_ids_pos):
return []
elif len(target_ids_pos) == 1:
# Word to replace is tokenized as a single word
top_preds = id_preds[target_ids_pos[0]].tolist()
replacement_words = []
for id in top_preds:
token = self._lm_tokenizer.convert_ids_to_tokens(id)
if utils.is_one_word(token) and not check_if_subword(token):
replacement_words.append(token)
return replacement_words
else:
# Word to replace is tokenized as multiple sub-words
top_preds = [id_preds[i] for i in target_ids_pos]
products = itertools.product(*top_preds)
combination_results = []
# Original BERT-Attack implement uses cross-entropy loss
cross_entropy_loss = torch.nn.CrossEntropyLoss(reduction="none")
target_ids_pos_tensor = torch.tensor(target_ids_pos)
word_tensor = torch.zeros(len(target_ids_pos), dtype=torch.long)
for bpe_tokens in products:
for i in range(len(bpe_tokens)):
word_tensor[i] = bpe_tokens[i]
logits = torch.index_select(masked_lm_logits, 0, target_ids_pos_tensor)
loss = cross_entropy_loss(logits, word_tensor)
perplexity = torch.exp(torch.mean(loss, dim=0)).item()
word = "".join(
self._lm_tokenizer.convert_ids_to_tokens(word_tensor)
).replace("##", "")
if utils.is_one_word(word):
combination_results.append((word, perplexity))
# Sort to get top-K results
sorted(combination_results, key=lambda x: x[1])
top_replacements = [
x[0] for x in combination_results[: self.max_candidates]
]
return top_replacements
def _get_replacement_words(self, current_text, index, **kwargs):
if self.method == "bae":
return self._bae_replacement_words(current_text, index)
elif self.method == "bert-attack":
return self._bert_attack_replacement_words(current_text, index, **kwargs)
else:
raise ValueError(f"Unrecognized value {self.method} for `self.method`.")
def _get_transformations(self, current_text, indices_to_modify):
# extra_args = {}
if self.method == "bert-attack":
current_inputs = self._encode_text(current_text.text)
with torch.no_grad():
pred_probs = self._language_model(**current_inputs)[0][0]
top_probs, top_ids = torch.topk(pred_probs, self.max_candidates)
id_preds = top_ids.cpu()
masked_lm_logits = pred_probs.cpu()
transformed_texts = []
for i in indices_to_modify:
word_at_index = current_text.words[i]
if self.method == "bert-attack":
replacement_words = self._get_replacement_words(
current_text,
i,
id_preds=id_preds,
masked_lm_logits=masked_lm_logits,
)
else:
replacement_words = self._get_replacement_words(current_text, i)
transformed_texts_idx = []
for r in replacement_words:
if r != word_at_index:
transformed_texts_idx.append(
current_text.replace_word_at_index(i, r)
)
transformed_texts.extend(transformed_texts_idx)
return transformed_texts
def extra_repr_keys(self):
return ["method", "masked_lm_name", "max_length", "max_candidates"]
def recover_word_case(word, reference_word):
"""Makes the case of `word` like the case of `reference_word`.
Supports lowercase, UPPERCASE, and Capitalized.
"""
if reference_word.islower():
return word.lower()
elif reference_word.isupper() and len(reference_word) > 1:
return word.upper()
elif reference_word[0].isupper() and reference_word[1:].islower():
return word.capitalize()
else:
# if other, just do not alter the word's case
return word
def check_if_subword(text):
return True if "##" in text else False