1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/search_methods/genetic_algorithm.py
2020-07-26 03:49:43 -04:00

271 lines
10 KiB
Python

from abc import ABC, abstractmethod
import numpy as np
import torch
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.search_methods import PopulationBasedSearch, PopulationMember
from textattack.shared.validators import transformation_consists_of_word_swaps
class GeneticAlgorithm(PopulationBasedSearch, ABC):
"""Base class for attacking a model with word substiutitions using a
genetic algorithm.
Args:
pop_size (int): The population size. Defaults to 20.
max_iters (int): The maximum number of iterations to use. Defaults to 50.
temp (float): Temperature for softmax function used to normalize probability dist when sampling parents.
Higher temperature increases the sensitivity to lower probability candidates.
give_up_if_no_improvement (bool): If True, stop the search early if no candidate that improves the score is found.
post_crossover_check (bool): If True, check if child produced from crossover step passes the constraints.
max_crossover_retries (int): Maximum number of crossover retries if resulting child fails to pass the constraints.
Applied only when `post_crossover_check` is set to `True`.
Setting it to 0 means we immediately take one of the parents at random as the child upon failure.
"""
def __init__(
self,
pop_size=60,
max_iters=20,
temp=0.3,
give_up_if_no_improvement=False,
post_crossover_check=True,
max_crossover_retries=20,
):
self.max_iters = max_iters
self.pop_size = pop_size
self.temp = temp
self.give_up_if_no_improvement = give_up_if_no_improvement
self.post_crossover_check = post_crossover_check
self.max_crossover_retries = max_crossover_retries
# internal flag to indicate if search should end immediately
self._search_over = False
@abstractmethod
def _modify_population_member(self, pop_member, new_text, new_result, word_idx):
"""Modify `pop_member` by returning a new copy with `new_text`,
`new_result`, and `num_replacements_per_word` altered appropriately for
given `word_idx`"""
raise NotImplementedError()
def _perturb(self, pop_member, original_result, index=None):
"""Perturb `pop_member` and return it. Replaces a word at a random
(unless `index` is specified) in `pop_member`.
Args:
pop_member (PopulationMember): The population member being perturbed.
original_result (GoalFunctionResult): Result of original sample being attacked
index (int): Index of word to perturb.
Returns:
Perturbed `PopulationMember`
"""
num_words = pop_member.num_replacements_per_word.shape[0]
num_replacements_per_word = np.copy(pop_member.num_replacements_per_word)
non_zero_indices = np.count_nonzero(num_replacements_per_word)
if non_zero_indices == 0:
return pop_member
iterations = 0
while iterations < non_zero_indices:
if index:
idx = index
else:
w_select_probs = num_replacements_per_word / np.sum(
num_replacements_per_word
)
idx = np.random.choice(num_words, 1, p=w_select_probs)[0]
transformed_texts = self.get_transformations(
pop_member.attacked_text,
original_text=original_result.attacked_text,
indices_to_modify=[idx],
)
if not len(transformed_texts):
iterations += 1
continue
new_results, self._search_over = self.get_goal_results(transformed_texts)
if self._search_over:
break
diff_scores = (
torch.Tensor([r.score for r in new_results]) - pop_member.result.score
)
if len(diff_scores) and diff_scores.max() > 0:
idx_with_max_score = diff_scores.argmax()
pop_member = self._modify_population_member(
pop_member,
transformed_texts[idx_with_max_score],
new_results[idx_with_max_score],
idx,
)
return pop_member
num_replacements_per_word[idx] = 0
iterations += 1
return pop_member
@abstractmethod
def _crossover_operation(self, pop_member1, pop_member2):
"""Actual operation for generating crossover between pop_member1 and
pop_member2.
Args:
pop_member1 (PopulationMember): The first population member.
pop_member2 (PopulationMember): The second population member.
Returns:
Tuple of `AttackedText` and `np.array` for new text and its corresponding `num_replacements_per_word`.
"""
raise NotImplementedError()
def _crossover(self, pop_member1, pop_member2, original_text):
"""Generates a crossover between pop_member1 and pop_member2.
If the child fails to satisfy the constraints, we re-try crossover for a fix number of times,
before taking one of the parents at random as the resulting child.
Args:
pop_member1 (PopulationMember): The first population member.
pop_member2 (PopulationMember): The second population member.
original_text (AttackedText): Original text
Returns:
A population member containing the crossover.
"""
x1_text = pop_member1.attacked_text
x2_text = pop_member2.attacked_text
num_tries = 0
passed_constraints = False
while num_tries < self.max_crossover_retries + 1:
new_text, num_replacements_per_word = self._crossover_operation(
pop_member1, pop_member2
)
replaced_indices = new_text.attack_attrs["newly_modified_indices"]
new_text.attack_attrs["modified_indices"] = (
x1_text.attack_attrs["modified_indices"] - replaced_indices
) | (x2_text.attack_attrs["modified_indices"] & replaced_indices)
if "last_transformation" in x1_text.attack_attrs:
new_text.attack_attrs["last_transformation"] = x1_text.attack_attrs[
"last_transformation"
]
elif "last_transformation" in x2_text.attack_attrs:
new_text.attack_attrs["last_transformation"] = x2_text.attack_attrs[
"last_transformation"
]
if not self.post_crossover_check or (
new_text.text == x1_text.text or new_text.text == x2_text.text
):
break
if "last_transformation" in new_text.attack_attrs:
previous_text = (
x1_text
if "last_transformation" in x1_text.attack_attrs
else x2_text
)
passed_constraints = self._check_constraints(
new_text, previous_text, original_text=original_text
)
else:
passed_constraints = True
if passed_constraints:
break
num_tries += 1
if self.post_crossover_check and not passed_constraints:
# If we cannot find a child that passes the constraints,
# we just randomly pick one of the parents to be the child for the next iteration.
pop_mem = pop_member1 if np.random.uniform() < 0.5 else pop_member2
return pop_mem
else:
new_results, self._search_over = self.get_goal_results([new_text])
return PopulationMember(
new_text,
result=new_results[0],
num_replacements_per_word=num_replacements_per_word,
)
@abstractmethod
def _initialize_population(self, initial_result, pop_size):
"""
Initialize a population of size `pop_size` with `initial_result`
Args:
initial_result (GoalFunctionResult): Original text
pop_size (int): size of population
Returns:
population as `list[PopulationMember]`
"""
raise NotImplementedError()
def _perform_search(self, initial_result):
self._search_over = False
population = self._initialize_population(initial_result, self.pop_size)
pop_size = len(population)
current_score = initial_result.score
for i in range(self.max_iters):
population = sorted(population, key=lambda x: x.result.score, reverse=True)
if (
self._search_over
or population[0].result.goal_status
== GoalFunctionResultStatus.SUCCEEDED
):
break
if population[0].result.score > current_score:
current_score = population[0].result.score
elif self.give_up_if_no_improvement:
break
pop_scores = torch.Tensor([pm.result.score for pm in population])
logits = ((-pop_scores) / self.temp).exp()
select_probs = (logits / logits.sum()).cpu().numpy()
parent1_idx = np.random.choice(pop_size, size=pop_size - 1, p=select_probs)
parent2_idx = np.random.choice(pop_size, size=pop_size - 1, p=select_probs)
children = []
for idx in range(pop_size - 1):
child = self._crossover(
population[parent1_idx[idx]],
population[parent2_idx[idx]],
initial_result.attacked_text,
)
if self._search_over:
break
child = self._perturb(child, initial_result)
children.append(child)
# We need two `search_over` checks b/c value might change both in
# `crossover` method and `perturb` method.
if self._search_over:
break
population = [population[0]] + children
return population[0].result
def check_transformation_compatibility(self, transformation):
"""The genetic algorithm is specifically designed for word
substitutions."""
return transformation_consists_of_word_swaps(transformation)
def extra_repr_keys(self):
return [
"pop_size",
"max_iters",
"temp",
"give_up_if_no_improvement",
"post_crossover_check",
"max_crossover_retries",
]