1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/search_methods/genetic_algorithm.py
2020-07-16 05:06:06 -04:00

281 lines
11 KiB
Python

"""Reimplementation of search method from Generating Natural Language
Adversarial Examples by Alzantot et.
al `<arxiv.org/abs/1804.07998>`_
`<github.com/nesl/nlp_adversarial_examples>`_
"""
# from copy import deepcopy
import numpy as np
import torch
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.search_methods import PopulationBasedMethod, PopulationMember
from textattack.shared.validators import transformation_consists_of_word_swaps
class GeneticAlgorithm(PopulationBasedMethod):
"""Attacks a model with word substiutitions using a genetic algorithm.
Args:
pop_size (int): The population size. Defaults to 20.
max_iters (int): The maximum number of iterations to use. Defaults to 50.
temp (float): Temperature for softmax function used to normalize probability dist when sampling parents.
Higher temperature increases the sensitivity to lower probability candidates.
give_up_if_no_improvement (bool): If True, stop the search early if no candidate that improves the score is found.
post_crossover_check (bool): If True, check if child produced from crossover step passes the constraints.
max_crossover_retries (int): Maximum number of crossover retries if resulting child fails to pass the constraints.
Applied only when `post_crossover_check` is set to `True`.
Setting it to 0 means we immediately take one of the parents at random as the child upon failure.
"""
def __init__(
self,
pop_size=20,
max_iters=50,
temp=0.3,
give_up_if_no_improvement=False,
post_crossover_check=True,
max_crossover_retries=20,
):
self.max_iters = max_iters
self.pop_size = pop_size
self.temp = temp
self.give_up_if_no_improvement = give_up_if_no_improvement
self.post_crossover_check = post_crossover_check
self.max_crossover_retries = max_crossover_retries
# internal flag to indicate if search should end immediately
self._search_over = False
def _perturb(self, pop_member, original_result):
"""Perturb `pop_member` in-place.
Replaces a word at a random in `pop_member` with replacement word that maximizes increase in score.
Args:
pop_member (PopulationMember): The population member being perturbed.
original_result (GoalFunctionResult): Result of original sample being attacked
Returns:
`True` if perturbation occured. `False` if not.
"""
num_words = pop_member.num_replacements_per_word.shape[0]
num_replacements_per_word = np.copy(pop_member.num_replacements_per_word)
non_zero_indices = np.count_nonzero(num_replacements_per_word)
if non_zero_indices == 0:
return False
iterations = 0
while iterations < non_zero_indices:
w_select_probs = num_replacements_per_word / np.sum(
num_replacements_per_word
)
idx = np.random.choice(num_words, 1, p=w_select_probs)[0]
transformations = self.get_transformations(
pop_member.attacked_text,
original_text=original_result.attacked_text,
indices_to_modify=[idx],
)
if not len(transformations):
iterations += 1
continue
new_results, self._search_over = self.get_goal_results(transformations)
if self._search_over:
break
diff_scores = (
torch.Tensor([r.score for r in new_results]) - pop_member.result.score
)
if len(diff_scores) and diff_scores.max() > 0:
idx_with_max_score = diff_scores.argmax()
pop_member.attacked_text = transformations[idx_with_max_score]
pop_member.results = new_results[idx_with_max_score]
pop_member.num_replacements_per_word[idx] = 0
return True
num_replacements_per_word[idx] = 0
iterations += 1
return False
def _crossover(self, pop_member1, pop_member2, original_result):
"""Generates a crossover between pop_member1 and pop_member2.
If the child fails to satisfy the constraits, we re-try crossover for a fix number of times,
before taking one of the parents at random as the resulting child.
Args:
pop_member1 (PopulationMember): The first population member.
pop_member2 (PopulationMember): The second population member.
Returns:
A population member containing the crossover.
"""
x1_text = pop_member1.attacked_text
x2_text = pop_member2.attacked_text
x2_words = x2_text.words
num_tries = 0
passed_constraints = False
while num_tries < self.max_crossover_retries + 1:
indices_to_replace = []
words_to_replace = []
num_replacements_per_word = np.copy(pop_member1.num_replacements_per_word)
for i in range(len(x1_text.words)):
if np.random.uniform() < 0.5:
indices_to_replace.append(i)
words_to_replace.append(x2_words[i])
num_replacements_per_word[
i
] = pop_member2.num_replacements_per_word[i]
new_text = x1_text.replace_words_at_indices(
indices_to_replace, words_to_replace
)
if not self.post_crossover_check or (
new_text.text == x1_text.text or new_text.text == x2_text.text
):
break
if "last_transformation" in x1_text.attack_attrs:
passed_constraints = self._check_constraints(
new_text, x1_text, original_text=original_result.attacked_text
)
elif "last_transformation" in x2_text.attack_attrs:
passed_constraints = self._check_constraints(
new_text, x2_text, original_text=original_result.attacked_text
)
else:
passed_constraints = True
if passed_constraints:
break
num_tries += 1
if self.post_crossover_check and not passed_constraints:
# If we cannot find a child that passes the constraints,
# we just randomly pick one of the parents to be the child for the next iteration.
pop_mem = pop_member1 if np.random.uniform() < 0.5 else pop_member2
return pop_mem
else:
new_results, self._search_over = self.get_goal_results([new_text])
return PopulationMember(
new_text,
new_results[0],
num_replacements_per_word=num_replacements_per_word,
)
def _initialize_population(self, initial_result, pop_size):
"""
Initialize a population of size `pop_size` with `initial_result`
Args:
initial_result (GoalFunctionResult): Original text
pop_size (int): size of population
Returns:
population as `list[PopulationMember]`
"""
words = initial_result.attacked_text.words
num_replacements_per_word = np.zeros(len(words))
transformations = self.get_transformations(
initial_result.attacked_text, original_text=initial_result.attacked_text
)
for transformed_text in transformations:
diff_idx = next(
iter(transformed_text.attack_attrs["newly_modified_indices"])
)
num_replacements_per_word[diff_idx] += 1
# Just b/c there are no replacements now doesn't mean we never want to select the word for perturbation
# Therefore, we give small non-zero probability for words with no replacements
# Epsilon is some small number to approximately assign 1% probability
num_total_candidates = np.sum(num_replacements_per_word)
epsilon = max(1, int(num_total_candidates * 0.01))
for i in range(len(num_replacements_per_word)):
if num_replacements_per_word[i] == 0:
num_replacements_per_word[i] = epsilon
population = []
for _ in range(pop_size):
pop_member = PopulationMember(
initial_result.attacked_text,
initial_result,
num_replacements_per_word=np.copy(num_replacements_per_word),
)
# Perturb `pop_member` in-place
self._perturb(pop_member, initial_result)
population.append(pop_member)
return population
def _perform_search(self, initial_result):
self._search_over = False
population = self._initialize_population(initial_result, self.pop_size)
current_score = initial_result.score
for i in range(self.max_iters):
population = sorted(population, key=lambda x: x.result.score, reverse=True)
if (
self._search_over
or population[0].result.goal_status
== GoalFunctionResultStatus.SUCCEEDED
):
break
if population[0].result.score > current_score:
current_score = population[0].result.score
elif self.give_up_if_no_improvement:
break
pop_scores = torch.Tensor([pm.result.score for pm in population])
logits = ((-pop_scores) / self.temp).exp()
select_probs = (logits / logits.sum()).cpu().numpy()
parent1_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
parent2_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
children = []
for idx in range(self.pop_size - 1):
child = self._crossover(
population[parent1_idx[idx]],
population[parent2_idx[idx]],
initial_result,
)
if self._search_over:
break
self._perturb(child, initial_result)
children.append(child)
# We need two `search_over` checks b/c value might change both in
# `crossover` method and `perturb` method.
if self._search_over:
break
if self._search_over:
break
population = [population[0]] + children
return population[0].result
def check_transformation_compatibility(self, transformation):
"""The genetic algorithm is specifically designed for word
substitutions."""
return transformation_consists_of_word_swaps(transformation)
def extra_repr_keys(self):
return [
"pop_size",
"max_iters",
"temp",
"give_up_if_no_improvement",
"post_crossover_check",
"max_crossover_retries",
]