1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/constraints/semantics/word_embedding_distance.py
2020-07-06 12:51:16 -04:00

180 lines
7.0 KiB
Python

import os
import pickle
import numpy as np
import torch
from textattack.constraints import Constraint
from textattack.shared import AttackedText, utils
from textattack.shared.validators import transformation_consists_of_word_swaps
class WordEmbeddingDistance(Constraint):
"""
A constraint on word substitutions which places a maximum distance between the embedding of the
word being deleted and the word being inserted.
Args:
embedding_type (str): The word embedding to use.
include_unknown_words (bool): Whether or not the constraint is fulfilled
if the embedding of x or x_adv is unknown.
min_cos_sim: The minimum cosine similarity between word embeddings.
max_mse_dist: The maximum euclidean distance between word embeddings.
cased (bool): Whether embedding supports uppercase & lowercase
(defaults to False, or just lowercase).
compare_against_original (bool): If `True`, compare new `x_adv` against the original `x`.
Otherwise, compare it against the previous `x_adv`.
"""
PATH = "word_embeddings"
def __init__(
self,
embedding_type="paragramcf",
include_unknown_words=True,
min_cos_sim=None,
max_mse_dist=None,
cased=False,
compare_against_original=True,
):
super().__init__(compare_against_original)
self.include_unknown_words = include_unknown_words
self.cased = cased
self.min_cos_sim = min_cos_sim
self.max_mse_dist = max_mse_dist
self.embedding_type = embedding_type
if embedding_type == "paragramcf":
word_embeddings_folder = "paragramcf"
word_embeddings_file = "paragram.npy"
word_list_file = "wordlist.pickle"
mse_dist_file = "mse_dist.p"
cos_sim_file = "cos_sim.p"
else:
raise ValueError(f"Could not find word embedding {embedding_type}")
# Download embeddings if they're not cached.
word_embeddings_path = utils.download_if_needed(WordEmbeddingDistance.PATH)
word_embeddings_folder = os.path.join(
word_embeddings_path, word_embeddings_folder
)
# Concatenate folder names to create full path to files.
word_embeddings_file = os.path.join(
word_embeddings_folder, word_embeddings_file
)
word_list_file = os.path.join(word_embeddings_folder, word_list_file)
mse_dist_file = os.path.join(word_embeddings_folder, mse_dist_file)
cos_sim_file = os.path.join(word_embeddings_folder, cos_sim_file)
# Actually load the files from disk.
self.word_embeddings = np.load(word_embeddings_file)
self.word_embedding_word2index = np.load(word_list_file, allow_pickle=True)
# Precomputed distance matrices store distances at mat[x][y], where
# x and y are word IDs and x < y.
if self.max_mse_dist is not None and os.path.exists(mse_dist_file):
with open(mse_dist_file, "rb") as f:
self.mse_dist_mat = pickle.load(f)
else:
self.mse_dist_mat = {}
if self.min_cos_sim is not None and os.path.exists(cos_sim_file):
with open(cos_sim_file, "rb") as f:
self.cos_sim_mat = pickle.load(f)
else:
self.cos_sim_mat = {}
def get_cos_sim(self, a, b):
""" Returns the cosine similarity of words with IDs a and b."""
if isinstance(a, str):
a = self.word_embedding_word2index[a]
if isinstance(b, str):
b = self.word_embedding_word2index[b]
a, b = min(a, b), max(a, b)
try:
cos_sim = self.cos_sim_mat[a][b]
except KeyError:
e1 = self.word_embeddings[a]
e2 = self.word_embeddings[b]
e1 = torch.tensor(e1).to(utils.device)
e2 = torch.tensor(e2).to(utils.device)
cos_sim = torch.nn.CosineSimilarity(dim=0)(e1, e2)
self.cos_sim_mat[a][b] = cos_sim
return cos_sim
def get_mse_dist(self, a, b):
""" Returns the MSE distance of words with IDs a and b."""
a, b = min(a, b), max(a, b)
try:
mse_dist = self.mse_dist_mat[a][b]
except KeyError:
e1 = self.word_embeddings[a]
e2 = self.word_embeddings[b]
e1 = torch.tensor(e1).to(utils.device)
e2 = torch.tensor(e2).to(utils.device)
mse_dist = torch.sum((e1 - e2) ** 2)
self.mse_dist_mat[a][b] = mse_dist
return mse_dist
def _check_constraint(self, transformed_text, reference_text):
"""
Returns true if (``transformed_text`` and ``reference_text``) are closer than
``self.min_cos_sim`` and ``self.max_mse_dist``.
"""
try:
indices = transformed_text.attack_attrs["newly_modified_indices"]
except KeyError:
raise KeyError(
"Cannot apply part-of-speech constraint without `newly_modified_indices`"
)
for i in indices:
ref_word = reference_text.words[i]
transformed_word = transformed_text.words[i]
if not self.cased:
# If embedding vocabulary is all lowercase, lowercase words.
ref_word = ref_word.lower()
transformed_word = transformed_word.lower()
try:
ref_id = self.word_embedding_word2index[ref_word]
transformed_id = self.word_embedding_word2index[transformed_word]
except KeyError:
# This error is thrown if x or x_adv has no corresponding ID.
if self.include_unknown_words:
continue
return False
# Check cosine distance.
if self.min_cos_sim:
cos_sim = self.get_cos_sim(ref_id, transformed_id)
if cos_sim < self.min_cos_sim:
return False
# Check MSE distance.
if self.max_mse_dist:
mse_dist = self.get_mse_dist(ref_id, transformed_id)
if mse_dist > self.max_mse_dist:
return False
return True
def check_compatibility(self, transformation):
"""
WordEmbeddingDistance requires a word being both deleted and inserted at the same index
in order to compare their embeddings, therefore it's restricted to word swaps.
"""
return transformation_consists_of_word_swaps(transformation)
def extra_repr_keys(self):
"""Set the extra representation of the constraint using these keys.
To print customized extra information, you should reimplement
this method in your own constraint. Both single-line and multi-line
strings are acceptable.
"""
if self.min_cos_sim is None:
metric = "max_mse_dist"
else:
metric = "min_cos_sim"
return ["embedding_type", metric, "cased", "include_unknown_words"] + super().extra_repr_keys()