1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/shared/scripts/benchmark_models.py
2020-05-02 21:01:50 -04:00

89 lines
3.2 KiB
Python

import argparse
import textattack
import torch
import sys
from run_attack_args_helper import *
import textattack.models as models
def _cb(s): return textattack.shared.utils.color_text(str(s), color='blue', method='stdout')
def _cg(s): return textattack.shared.utils.color_text(str(s), color='green', method='stdout')
def _cr(s): return textattack.shared.utils.color_text(str(s), color='red', method='stdout')
def _pb(): print(_cg('-' * 60))
from collections import Counter
def get_num_successes(model, ids, true_labels):
id_dim = torch.tensor(ids).ndim
if id_dim == 2:
# For models where the input is a single vector.
ids = torch.tensor(ids).to(textattack.shared.utils.get_device())
preds = model(ids)
elif id_dim == 3:
# For models that take multiple vectors per input.
ids = map(torch.tensor, zip(*ids))
ids = (x.to(textattack.shared.utils.get_device()) for x in ids)
preds = model(*ids)
else:
raise TypeError(f'Error: malformed id_dim ({id_dim})')
true_labels = torch.tensor(true_labels).to(textattack.shared.utils.get_device())
guess_labels = preds.argmax(dim=1)
successes = (guess_labels == true_labels).sum().item()
return successes, true_labels, guess_labels
def test_model_on_dataset(model, dataset, batch_size=16, num_examples=100):
succ = 0
fail = 0
batch_ids = []
batch_labels = []
all_true_labels = []
all_guess_labels = []
for i, (text, label) in enumerate(dataset):
if i >= num_examples: break
ids = model.tokenizer.encode(text)
batch_ids.append(ids)
batch_labels.append(label)
if len(batch_ids) == batch_size:
batch_succ, true_labels, guess_labels = get_num_successes(model, batch_ids, batch_labels)
batch_fail = batch_size - batch_succ
succ += batch_succ
fail += batch_fail
batch_ids = []
batch_labels = []
all_true_labels.extend(true_labels.tolist())
all_guess_labels.extend(guess_labels.tolist())
if len(batch_ids) > 0:
batch_succ, true_labels, guess_labels = get_num_successes(model, batch_ids, batch_labels)
batch_fail = len(batch_ids) - batch_succ
succ += batch_succ
fail += batch_fail
all_true_labels.extend(true_labels.tolist())
all_guess_labels.extend(guess_labels.tolist())
perc = float(succ)/(succ+fail)*100.0
perc = '{:.2f}%'.format(perc)
print(f'Successes {succ}/{succ+fail} ({_cb(perc)})')
return perc
def test_all_models(num_examples):
_pb()
for model_name in MODEL_CLASS_NAMES:
model = eval(MODEL_CLASS_NAMES[model_name])()
dataset = DATASET_BY_MODEL[model_name]()
print(f'Testing {_cr(model_name)} on {_cr(type(dataset))}...')
test_model_on_dataset(model, dataset, num_examples=num_examples)
_pb()
# @TODO print the grid of models/dataset names with results in a nice table :)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--n', type=int, default=100,
help="number of examples to test on")
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
with torch.no_grad():
test_all_models(args.n)