1
0
mirror of https://github.com/QData/TextAttack.git synced 2021-10-13 00:05:06 +03:00
Files
textattack-nlp-transformer/textattack/search_methods/genetic_algorithm.py
2020-07-01 01:26:11 -04:00

268 lines
10 KiB
Python

"""
Reimplementation of search method from Generating Natural Language Adversarial Examples
by Alzantot et. al
`<arxiv.org/abs/1804.07998>`_
`<github.com/nesl/nlp_adversarial_examples>`_
"""
from copy import deepcopy
import numpy as np
import torch
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.search_methods import SearchMethod
from textattack.shared.validators import transformation_consists_of_word_swaps
class GeneticAlgorithm(SearchMethod):
"""
Attacks a model with word substiutitions using a genetic algorithm.
Args:
pop_size (int): The population size. Defaults to 20.
max_iters (int): The maximum number of iterations to use. Defaults to 50.
temp (float): Temperature for softmax function used to normalize probability dist when sampling parents.
Higher temperature increases the sensitivity to lower probability candidates.
give_up_if_no_improvement (bool): If True, stop the search early if no candidate that improves the score is found.
max_crossover_retries (int): Maximum number of crossover retries if resulting child fails to pass the constraints.
Setting it to 0 means we immediately take one of the parents at random as the child.
"""
def __init__(
self,
pop_size=20,
max_iters=50,
temp=0.3,
give_up_if_no_improvement=False,
max_crossover_retries=20,
):
self.max_iters = max_iters
self.pop_size = pop_size
self.temp = temp
self.give_up_if_no_improvement = give_up_if_no_improvement
self.max_crossover_retries = max_crossover_retries
# internal flag to indicate if search should end immediately
self._search_over = False
def _perturb(self, pop_member, original_result):
"""
Replaces a word in pop_member that has not been modified in place.
Args:
pop_member (PopulationMember): The population member being perturbed.
original_result (GoalFunctionResult): Result of original sample being attacked
Returns: None
"""
num_words = pop_member.num_candidates_per_word.shape[0]
num_candidates_per_word = np.copy(pop_member.num_candidates_per_word)
non_zero_indices = np.count_nonzero(num_candidates_per_word)
if non_zero_indices == 0:
return
iterations = 0
while iterations < non_zero_indices:
w_select_probs = num_candidates_per_word / np.sum(num_candidates_per_word)
rand_idx = np.random.choice(num_words, 1, p=w_select_probs)[0]
transformations = self.get_transformations(
pop_member.attacked_text,
original_text=original_result.attacked_text,
indices_to_modify=[rand_idx],
)
if not len(transformations):
iterations += 1
continue
new_results, self._search_over = self.get_goal_results(transformations)
if self._search_over:
break
diff_scores = (
torch.Tensor([r.score for r in new_results]) - pop_member.result.score
)
if len(diff_scores) and diff_scores.max() > 0:
idx = diff_scores.argmax()
pop_member.attacked_text = transformations[idx]
pop_member.num_candidates_per_word[rand_idx] = 0
pop_member.results = new_results[idx]
break
num_candidates_per_word[rand_idx] = 0
iterations += 1
def _crossover(self, pop_member1, pop_member2, original_result):
"""
Generates a crossover between pop_member1 and pop_member2.
If the child fails to satisfy the constraits, we re-try crossover for a fix number of times,
before taking one of the parents at random as the resulting child.
Args:
pop_member1 (PopulationMember): The first population member.
pop_member2 (PopulationMember): The second population member.
Returns:
A population member containing the crossover.
"""
x1_text = pop_member1.attacked_text
x2_words = pop_member2.attacked_text.words
num_tries = 0
passed_constraints = False
while num_tries < self.max_crossover_retries + 1:
indices_to_replace = []
words_to_replace = []
num_candidates_per_word = np.copy(pop_member1.num_candidates_per_word)
for i in range(len(x1_text.words)):
if np.random.uniform() < 0.5:
indices_to_replace.append(i)
words_to_replace.append(x2_words[i])
num_candidates_per_word[i] = pop_member2.num_candidates_per_word[i]
new_text = x1_text.replace_words_at_indices(
indices_to_replace, words_to_replace
)
new_text.attack_attrs["last_transformation"] = x1_text.attack_attrs[
"last_transformation"
]
filtered = self.filter_transformations(
[new_text], x1_text, original_text=original_result.attacked_text
)
if filtered:
new_text = filtered[0]
passed_constraints = True
break
num_tries += 1
if not passed_constraints:
# If we cannot find a child that passes the constraints,
# we just randomly pick one of the parents to be the child for the next iteration.
new_text = (
pop_member1.attacked_text
if np.random.uniform() < 0.5
else pop_member2.attacked_text
)
new_results, self._search_over = self.get_goal_results([new_text])
return PopulationMember(new_text, num_candidates_per_word, new_results[0])
def _initialize_population(self, initial_result):
"""
Initialize a population of texts each with one word replaced
Args:
initial_result (GoalFunctionResult): The result to instantiate the population with
Returns:
The population.
"""
words = initial_result.attacked_text.words
num_candidates_per_word = np.zeros(len(words))
transformations = self.get_transformations(
initial_result.attacked_text, original_text=initial_result.attacked_text
)
for transformed_text in transformations:
diff_idx = initial_result.attacked_text.first_word_diff_index(
transformed_text
)
num_candidates_per_word[diff_idx] += 1
# Just b/c there are no candidates now doesn't mean we never want to select the word for perturbation
# Therefore, we give small non-zero probability for words with no candidates
# Epsilon is some small number to approximately assign 1% probability
total_candidates = np.sum(num_candidates_per_word)
num_zero_elements = len(words) - np.count_nonzero(num_candidates_per_word)
epsilon = max(1, int(total_candidates / (100 - num_zero_elements)))
for i in range(len(num_candidates_per_word)):
if num_candidates_per_word[i] == 0:
num_candidates_per_word[i] = epsilon
population = []
for _ in range(self.pop_size):
pop_member = PopulationMember(
initial_result.attacked_text,
np.copy(num_candidates_per_word),
initial_result,
)
# Perturb `pop_member` in-place
self._perturb(pop_member, initial_result)
population.append(pop_member)
return population
def _perform_search(self, initial_result):
self._search_over = False
population = self._initialize_population(initial_result)
current_score = initial_result.score
for i in range(self.max_iters):
population = sorted(population, key=lambda x: x.result.score, reverse=True)
if (
self._search_over
or population[0].result.goal_status
== GoalFunctionResultStatus.SUCCEEDED
):
break
if population[0].result.score > current_score:
current_score = population[0].result.score
elif self.give_up_if_no_improvement:
break
pop_scores = torch.Tensor([pm.result.score for pm in population])
logits = ((-pop_scores) / self.temp).exp()
select_probs = (logits / logits.sum()).cpu().numpy()
parent1_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
parent2_idx = np.random.choice(
self.pop_size, size=self.pop_size - 1, p=select_probs
)
children = []
for idx in range(self.pop_size - 1):
child = self._crossover(
population[parent1_idx[idx]],
population[parent2_idx[idx]],
initial_result,
)
if self._search_over:
break
self._perturb(child, initial_result)
children.append(child)
# We need two `search_over` checks b/c value might change both in
# `crossover` method and `perturb` method.
if self._search_over:
break
if self._search_over:
break
population = [population[0]] + children
return population[0].result
def check_transformation_compatibility(self, transformation):
"""
The genetic algorithm is specifically designed for word substitutions.
"""
return transformation_consists_of_word_swaps(transformation)
def extra_repr_keys(self):
return ["pop_size", "max_iters", "temp", "give_up_if_no_improvement"]
class PopulationMember:
"""
A member of the population during the course of the genetic algorithm.
Args:
attacked_text: The ``AttackedText`` of the population member.
num_candidates_per_word (numpy.array): A list of the number of candidate neighbors list for each word.
"""
def __init__(self, attacked_text, num_candidates_per_word, result):
self.attacked_text = attacked_text
self.num_candidates_per_word = num_candidates_per_word
self.result = result