mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2023-11-04 02:52:44 +03:00
parallel : working
This commit is contained in:
242
whisper.cpp
242
whisper.cpp
@@ -379,6 +379,7 @@ struct whisper_model {
|
||||
|
||||
// context
|
||||
struct ggml_context * ctx;
|
||||
struct ggml_context * ctx_mem;
|
||||
|
||||
// tensors
|
||||
int n_loaded;
|
||||
@@ -393,9 +394,10 @@ struct whisper_context {
|
||||
int64_t t_decode_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
std::vector<uint8_t> buf_model;
|
||||
std::vector<uint8_t> buf_compute;
|
||||
std::vector<uint8_t> buf_compute_layer;
|
||||
std::vector<uint8_t> * buf_model; // the model buffer is read-only and can be shared between processors
|
||||
std::vector<uint8_t> buf_memory;
|
||||
std::vector<uint8_t> buf_compute;
|
||||
std::vector<uint8_t> buf_compute_layer;
|
||||
|
||||
whisper_model model;
|
||||
whisper_vocab vocab;
|
||||
@@ -421,7 +423,7 @@ struct whisper_context {
|
||||
//
|
||||
// see the convert-pt-to-ggml.py script for details
|
||||
//
|
||||
bool whisper_model_load(const std::string & fname, const int n_processors, whisper_context & wctx) {
|
||||
bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto & model = wctx.model;
|
||||
@@ -494,13 +496,16 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
|
||||
fprintf(stderr, "%s: type = %d\n", __func__, model.type);
|
||||
|
||||
wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type));
|
||||
wctx.buf_model = new std::vector<uint8_t>();
|
||||
wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type));
|
||||
wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!!
|
||||
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
|
||||
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
|
||||
|
||||
// this is the total memory required to run the inference
|
||||
const size_t mem_required =
|
||||
wctx.buf_model.size() +
|
||||
wctx.buf_model->size() +
|
||||
wctx.buf_memory.size() +
|
||||
wctx.buf_compute.size() +
|
||||
wctx.buf_compute_layer.size();
|
||||
|
||||
@@ -583,6 +588,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
|
||||
|
||||
size_t ctx_size = 0;
|
||||
size_t ctx_mem_size = 0;
|
||||
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
@@ -691,11 +697,11 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
||||
}
|
||||
|
||||
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
||||
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
||||
ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
||||
ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
||||
|
||||
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
||||
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
||||
ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
||||
ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
||||
|
||||
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
||||
|
||||
@@ -705,8 +711,8 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_model.size(),
|
||||
.mem_buffer = wctx.buf_model.data(),
|
||||
.mem_size = wctx.buf_model->size(),
|
||||
.mem_buffer = wctx.buf_model->data(),
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@@ -716,6 +722,20 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
}
|
||||
}
|
||||
|
||||
// create the ggml memory context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_memory.size(),
|
||||
.mem_buffer = wctx.buf_memory.data(),
|
||||
};
|
||||
|
||||
model.ctx_mem = ggml_init(params);
|
||||
if (!model.ctx_mem) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
auto & ctx = model.ctx;
|
||||
@@ -914,7 +934,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
auto & ctx = model.ctx;
|
||||
auto & ctx = model.ctx_mem;
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
@@ -925,7 +945,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
// key/value memory for the self-attention layer
|
||||
{
|
||||
const int n_mem = n_text_layer*n_text_ctx;
|
||||
const int n_elements = n_text_state*n_mem*n_processors;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
@@ -936,7 +956,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
|
||||
const int n_mem = n_text_layer*n_audio_ctx;
|
||||
const int n_elements = n_text_state*n_mem*n_processors;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
|
||||
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
@@ -946,7 +966,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
||||
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
||||
|
||||
fprintf(stderr, "%s: memory size = %8.2f MB (%d processors)\n", __func__, memory_size/1024.0/1024.0, n_processors);
|
||||
fprintf(stderr, "%s: memory size = %8.2f MB\n", __func__, memory_size/1024.0/1024.0);
|
||||
}
|
||||
|
||||
// load weights
|
||||
@@ -1037,8 +1057,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
|
||||
bool whisper_encode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const int mel_offset,
|
||||
const int processor_id) {
|
||||
const int mel_offset) {
|
||||
const auto & model = wctx.model;
|
||||
const auto & mel_inp = wctx.mel;
|
||||
const auto & hparams = model.hparams;
|
||||
@@ -1392,11 +1411,8 @@ bool whisper_encode(
|
||||
Vcross),
|
||||
Vcross);
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(model.hparams.n_text_layer*n_ctx);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(model.hparams.n_text_layer*n_ctx);
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, offset_k + (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, offset_v + (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
||||
@@ -1429,8 +1445,7 @@ bool whisper_decode(
|
||||
const int n_threads,
|
||||
const whisper_token * tokens,
|
||||
const int n_tokens,
|
||||
const int n_past,
|
||||
const int processor_id) {
|
||||
const int n_past) {
|
||||
const auto & model = wctx.model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
@@ -1525,13 +1540,10 @@ bool whisper_decode(
|
||||
Vcur),
|
||||
Vcur);
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_k)*n_state)*(n_layer*n_ctx);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_v)*n_state)*(n_layer*n_ctx);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, offset_k + (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, offset_v + (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
|
||||
@@ -1549,7 +1561,7 @@ bool whisper_decode(
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, offset_k + il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
@@ -1569,7 +1581,7 @@ bool whisper_decode(
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, offset_v + il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
@@ -1621,18 +1633,15 @@ bool whisper_decode(
|
||||
|
||||
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(n_layer*M);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(n_layer*M);
|
||||
|
||||
// Kcross is already scaled
|
||||
struct ggml_tensor * Kcross =
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, offset_k + il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
struct ggml_tensor * Vcross =
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, offset_v + il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
// ------
|
||||
@@ -2118,26 +2127,7 @@ struct whisper_context * whisper_init(const char * path_model) {
|
||||
|
||||
ctx->t_start_us = t_start_us;
|
||||
|
||||
if (!whisper_model_load(path_model, 1, *ctx)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->t_load_us = ggml_time_us() - t_start_us;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors) {
|
||||
ggml_time_init();
|
||||
|
||||
whisper_context * ctx = new whisper_context;
|
||||
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
ctx->t_start_us = t_start_us;
|
||||
|
||||
if (!whisper_model_load(path_model, n_processors, *ctx)) {
|
||||
if (!whisper_model_load(path_model, *ctx)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
@@ -2149,6 +2139,9 @@ struct whisper_context * whisper_init_parallel(const char * path_model, int n_pr
|
||||
|
||||
void whisper_free(struct whisper_context * ctx) {
|
||||
if (ctx) {
|
||||
if (ctx->buf_model) {
|
||||
delete ctx->buf_model;
|
||||
}
|
||||
delete ctx;
|
||||
}
|
||||
}
|
||||
@@ -2188,7 +2181,7 @@ int whisper_set_mel(
|
||||
int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_encode(*ctx, n_threads, offset, 0)) {
|
||||
if (!whisper_encode(*ctx, n_threads, offset)) {
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@@ -2201,7 +2194,7 @@ int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
||||
int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past, 0)) {
|
||||
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -2322,7 +2315,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.strategy =*/ WHISPER_SAMPLING_GREEDY,
|
||||
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.n_processors =*/ 1,
|
||||
/*.n_max_text_ctx =*/ 16384,
|
||||
/*.offset_ms =*/ 0,
|
||||
|
||||
@@ -2355,7 +2347,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH,
|
||||
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.n_processors =*/ 1,
|
||||
/*.n_max_text_ctx =*/ 16384,
|
||||
/*.offset_ms =*/ 0,
|
||||
|
||||
@@ -2629,6 +2620,135 @@ int whisper_full(
|
||||
return 0;
|
||||
}
|
||||
|
||||
int whisper_full_parallel(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_full_params params,
|
||||
const float * samples,
|
||||
int n_samples,
|
||||
const int n_processors) {
|
||||
if (n_processors == 1) {
|
||||
return whisper_full(ctx, params, samples, n_samples);
|
||||
}
|
||||
|
||||
int ret = 0;
|
||||
|
||||
// prepare separate contexts for each thread
|
||||
std::vector<struct whisper_context> ctxs(n_processors - 1);
|
||||
|
||||
for (int i = 0; i < n_processors - 1; ++i) {
|
||||
ctxs[i] = *ctx;
|
||||
|
||||
auto & model = ctxs[i].model;
|
||||
|
||||
// create the ggml memory context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctxs[i].buf_memory.size(),
|
||||
.mem_buffer = ctxs[i].buf_memory.data(),
|
||||
};
|
||||
|
||||
model.ctx_mem = ggml_init(params);
|
||||
if (!model.ctx_mem) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// separate key + value memory for each processor
|
||||
{
|
||||
auto & ctx = model.ctx_mem;
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_text_state = hparams.n_text_state;
|
||||
const int n_text_layer = hparams.n_text_layer;
|
||||
const int n_text_ctx = hparams.n_text_ctx;
|
||||
|
||||
// key/value memory for the self-attention layer
|
||||
{
|
||||
const int n_mem = n_text_layer*n_text_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
}
|
||||
|
||||
// key/value memory for the cross-attention layer
|
||||
{
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
|
||||
const int n_mem = n_text_layer*n_audio_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
|
||||
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
}
|
||||
|
||||
const size_t memory_size =
|
||||
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
||||
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
||||
}
|
||||
}
|
||||
|
||||
const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000;
|
||||
const int n_samples_per_processor = (n_samples - offset_samples)/n_processors;
|
||||
|
||||
// the calling thread will process the first chunk
|
||||
// while the other threads will process the remaining chunks
|
||||
|
||||
std::vector<std::thread> workers(n_processors - 1);
|
||||
for (int i = 0; i < n_processors - 1; ++i) {
|
||||
const int start_samples = offset_samples + (i + 1)*n_samples_per_processor;
|
||||
const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor;
|
||||
|
||||
auto params_cur = params;
|
||||
|
||||
params_cur.offset_ms = 0;
|
||||
params_cur.print_progress = false;
|
||||
params_cur.print_realtime = false;
|
||||
|
||||
params_cur.new_segment_callback = nullptr;
|
||||
params_cur.new_segment_callback_user_data = nullptr;
|
||||
|
||||
workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur);
|
||||
}
|
||||
|
||||
{
|
||||
auto params_cur = params;
|
||||
|
||||
ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_processors - 1; ++i) {
|
||||
workers[i].join();
|
||||
}
|
||||
|
||||
const int64_t offset_t = (int64_t) params.offset_ms/10.0;
|
||||
|
||||
// combine results into ctx->result_all
|
||||
for (int i = 0; i < n_processors - 1; ++i) {
|
||||
auto & result_all = ctxs[i].result_all;
|
||||
|
||||
for (int j = 0; j < (int) result_all.size(); ++j) {
|
||||
result_all[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
|
||||
result_all[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
|
||||
|
||||
if (ctx->result_all.size() > 0) {
|
||||
result_all[j].t0 = std::max(result_all[j].t0, ctx->result_all.back().t1);
|
||||
}
|
||||
|
||||
ctx->result_all.push_back(std::move(result_all[j]));
|
||||
|
||||
// call the new_segment_callback for each segment
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int whisper_full_n_segments(struct whisper_context * ctx) {
|
||||
return ctx->result_all.size();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user