mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2023-11-04 02:52:44 +03:00
ggml : sync latest ggml lib
This commit is contained in:
@@ -52,6 +52,11 @@ bool ggml_common_quantize_0(
|
||||
case GGML_FTYPE_ALL_F32:
|
||||
case GGML_FTYPE_MOSTLY_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
||||
case GGML_FTYPE_MOSTLY_Q2_K:
|
||||
case GGML_FTYPE_MOSTLY_Q3_K:
|
||||
case GGML_FTYPE_MOSTLY_Q4_K:
|
||||
case GGML_FTYPE_MOSTLY_Q5_K:
|
||||
case GGML_FTYPE_MOSTLY_Q6_K:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
@@ -187,6 +192,12 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_Q8_1:
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
|
||||
@@ -6,13 +6,21 @@
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <locale>
|
||||
#include <codecvt>
|
||||
#include <sstream>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
@@ -52,7 +60,10 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
if (params.prompt.back() == '\n') {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
} else {
|
||||
} else if (arg == "-tt" || arg == "--token_test") {
|
||||
params.token_test = argv[++i];
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
@@ -73,6 +84,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
fprintf(stderr, " load prompt from a file\n");
|
||||
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
|
||||
fprintf(stderr, " test tokenization\n");
|
||||
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||
@@ -117,6 +130,10 @@ std::string replace(const std::string & s, const std::string & from, const std::
|
||||
return result;
|
||||
}
|
||||
|
||||
void gpt_vocab::add_special_token(const std::string & token) {
|
||||
special_tokens.push_back(token);
|
||||
}
|
||||
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
std::map<std::string, int32_t> result;
|
||||
|
||||
@@ -208,8 +225,28 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
return result;
|
||||
}
|
||||
|
||||
void gpt_vocab::add_special_token(const std::string & token) {
|
||||
special_tokens.push_back(token);
|
||||
std::string convert_to_utf8(const std::wstring & input) {
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||
return converter.to_bytes(input);
|
||||
}
|
||||
|
||||
|
||||
std::wstring convert_to_wstring(const std::string & input) {
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||
return converter.from_bytes(input);
|
||||
}
|
||||
|
||||
void gpt_split_words(std::string str, std::vector<std::string>& words) {
|
||||
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
const std::regex re(pattern);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
@@ -218,63 +255,52 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
// Generate the subpattern from the special_tokens vector if it's not empty
|
||||
if (!vocab.special_tokens.empty()) {
|
||||
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
|
||||
std::string special_tokens_subpattern;
|
||||
for (const auto & token : vocab.special_tokens) {
|
||||
if (!special_tokens_subpattern.empty()) {
|
||||
special_tokens_subpattern += "|";
|
||||
}
|
||||
special_tokens_subpattern += token;
|
||||
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
|
||||
}
|
||||
|
||||
// Modify the regex pattern with the generated special tokens subpattern
|
||||
pat = special_tokens_subpattern + "|" + pat;
|
||||
}
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
std::regex re(special_tokens_subpattern);
|
||||
std::smatch m;
|
||||
// Split the text by special tokens.
|
||||
while (std::regex_search(str, m, re)) {
|
||||
// Split the substrings in-between special tokens into words.
|
||||
gpt_split_words(m.prefix(), words);
|
||||
// Add matched special tokens as words.
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
str = m.suffix();
|
||||
// Remaining text without special tokens will be handled below.
|
||||
}
|
||||
|
||||
gpt_split_words(str, words);
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
// find the longest token that forms each word in words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
for (int i = 0; i < (int) word.size(); ){
|
||||
for (int j = word.size() - 1; j >= i; j--){
|
||||
auto cand = word.substr(i, j-i+1);
|
||||
auto it = vocab.token_to_id.find(cand);
|
||||
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
j = n;
|
||||
i = j + 1;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
else if (j == i){ // word.substr(i, 1) has no matching
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
|
||||
i++;
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -282,6 +308,70 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
|
||||
return tokens;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
|
||||
std::vector<gpt_vocab::id> output;
|
||||
std::stringstream ss(input);
|
||||
std::string token;
|
||||
|
||||
while (std::getline(ss, token, delimiter)) {
|
||||
output.push_back(std::stoi(token));
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
|
||||
if (fpath_test.empty()){
|
||||
fprintf(stderr, "%s : No test file found.\n", __func__);
|
||||
return std::map<std::string, std::vector<gpt_vocab::id>>();
|
||||
}
|
||||
|
||||
std::map<std::string, std::vector<gpt_vocab::id>> tests;
|
||||
|
||||
auto fin = std::ifstream(fpath_test, std::ios_base::in);
|
||||
const char * delimeter = " => ";
|
||||
const char del_tok = ',';
|
||||
std::string line;
|
||||
while (std::getline(fin, line)) {
|
||||
size_t delimiterPos = line.find(delimeter);
|
||||
if (delimiterPos != std::string::npos) {
|
||||
std::string text = line.substr(0, delimiterPos);
|
||||
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
|
||||
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
|
||||
}
|
||||
}
|
||||
return tests;
|
||||
}
|
||||
|
||||
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
|
||||
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
|
||||
|
||||
size_t n_fails = 0;
|
||||
|
||||
for (const auto & test : tests) {
|
||||
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
|
||||
|
||||
if (tokens != test.second){
|
||||
n_fails++;
|
||||
|
||||
// print out failure cases
|
||||
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
|
||||
fprintf(stderr, "%s : tokens in hf: ", __func__);
|
||||
for (const auto & t : test.second) {
|
||||
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s : tokens in ggml: ", __func__);
|
||||
for (const auto & t : tokens) {
|
||||
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
|
||||
}
|
||||
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
@@ -381,6 +471,122 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
const int32_t * last_n_tokens_data,
|
||||
size_t last_n_tokens_data_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
int repeat_last_n,
|
||||
float repeat_penalty,
|
||||
std::mt19937 & rng) {
|
||||
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
const auto * plogits = logits;
|
||||
|
||||
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
|
||||
|
||||
if (temp <= 0) {
|
||||
// select the token with the highest logit directly
|
||||
float max_logit = plogits[0];
|
||||
gpt_vocab::id max_id = 0;
|
||||
|
||||
for (int i = 1; i < n_logits; ++i) {
|
||||
if (plogits[i] > max_logit) {
|
||||
max_logit = plogits[i];
|
||||
max_id = i;
|
||||
}
|
||||
}
|
||||
return max_id;
|
||||
}
|
||||
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
{
|
||||
const float scale = 1.0f/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||
if (plogits[i] < 0.0f) {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
||||
}
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top K tokens
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
for (auto & p : probs) {
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
top_k = i + 1;
|
||||
probs.resize(top_k);
|
||||
logits_id.resize(top_k);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cumsum = 1.0/cumsum;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
probs[i] *= cumsum;
|
||||
}
|
||||
}
|
||||
|
||||
// printf("\n");
|
||||
// for (int i = 0; i < (int) probs.size(); i++) {
|
||||
// for (int i = 0; i < 10; i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||
// }
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
|
||||
}
|
||||
|
||||
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
@@ -26,8 +26,9 @@ struct gpt_params {
|
||||
|
||||
int32_t n_batch = 8; // batch size for prompt processing
|
||||
|
||||
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||
std::string prompt;
|
||||
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string token_test = "";
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@@ -61,6 +62,12 @@ struct gpt_vocab {
|
||||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
|
||||
std::string convert_to_utf8(const std::wstring & input);
|
||||
|
||||
std::wstring convert_to_wstring(const std::string & input);
|
||||
|
||||
void gpt_split_words(std::string str, std::vector<std::string>& words);
|
||||
|
||||
// split text into tokens
|
||||
//
|
||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||
@@ -73,6 +80,15 @@ std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
|
||||
// test outputs of gpt_tokenize
|
||||
//
|
||||
// - compare with tokens generated by the huggingface tokenizer
|
||||
// - test cases are chosen based on the model's main language (under 'prompt' directory)
|
||||
// - if all sentences are tokenized identically, print 'All tests passed.'
|
||||
// - otherwise, print sentence, huggingface tokens, ggml tokens
|
||||
//
|
||||
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
|
||||
@@ -92,6 +108,18 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
const int32_t * last_n_tokens_data,
|
||||
size_t last_n_tokens_data_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
int repeat_last_n,
|
||||
float repeat_penalty,
|
||||
std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Audio utils
|
||||
//
|
||||
|
||||
@@ -10,6 +10,10 @@
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
|
||||
// Lowest is red, middle is yellow, highest is green.
|
||||
const std::vector<std::string> k_colors = {
|
||||
@@ -148,7 +152,8 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
return false;
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -423,13 +428,13 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_arr = [&](bool end = false) {
|
||||
auto end_arr = [&](bool end) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "]\n" : "},\n");
|
||||
};
|
||||
|
||||
auto start_obj = [&](const char *name = nullptr) {
|
||||
auto start_obj = [&](const char *name) {
|
||||
doindent();
|
||||
if (name) {
|
||||
fout << "\"" << name << "\": {\n";
|
||||
@@ -439,7 +444,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
indent++;
|
||||
};
|
||||
|
||||
auto end_obj = [&](bool end = false) {
|
||||
auto end_obj = [&](bool end) {
|
||||
indent--;
|
||||
doindent();
|
||||
fout << (end ? "}\n" : "},\n");
|
||||
@@ -450,24 +455,24 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
fout << "\"" << name << "\": ";
|
||||
};
|
||||
|
||||
auto value_s = [&](const char *name, const char *val, bool end = false) {
|
||||
auto value_s = [&](const char *name, const char *val, bool end) {
|
||||
start_value(name);
|
||||
char * val_escaped = escape_double_quotes_and_backslashes(val);
|
||||
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
|
||||
free(val_escaped);
|
||||
};
|
||||
|
||||
auto end_value = [&](bool end = false) {
|
||||
auto end_value = [&](bool end) {
|
||||
fout << (end ? "\n" : ",\n");
|
||||
};
|
||||
|
||||
auto value_i = [&](const char *name, const int64_t val, bool end = false) {
|
||||
auto value_i = [&](const char *name, const int64_t val, bool end) {
|
||||
start_value(name);
|
||||
fout << val;
|
||||
end_value(end);
|
||||
};
|
||||
|
||||
auto value_b = [&](const char *name, const bool val, bool end = false) {
|
||||
auto value_b = [&](const char *name, const bool val, bool end) {
|
||||
start_value(name);
|
||||
fout << (val ? "true" : "false");
|
||||
end_value(end);
|
||||
@@ -479,35 +484,35 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
start_obj();
|
||||
value_s("systeminfo", whisper_print_system_info());
|
||||
start_obj(nullptr);
|
||||
value_s("systeminfo", whisper_print_system_info(), false);
|
||||
start_obj("model");
|
||||
value_s("type", whisper_model_type_readable(ctx));
|
||||
value_b("multilingual", whisper_is_multilingual(ctx));
|
||||
value_i("vocab", whisper_model_n_vocab(ctx));
|
||||
value_s("type", whisper_model_type_readable(ctx), false);
|
||||
value_b("multilingual", whisper_is_multilingual(ctx), false);
|
||||
value_i("vocab", whisper_model_n_vocab(ctx), false);
|
||||
start_obj("audio");
|
||||
value_i("ctx", whisper_model_n_audio_ctx(ctx));
|
||||
value_i("state", whisper_model_n_audio_state(ctx));
|
||||
value_i("head", whisper_model_n_audio_head(ctx));
|
||||
value_i("ctx", whisper_model_n_audio_ctx(ctx), false);
|
||||
value_i("state", whisper_model_n_audio_state(ctx), false);
|
||||
value_i("head", whisper_model_n_audio_head(ctx), false);
|
||||
value_i("layer", whisper_model_n_audio_layer(ctx), true);
|
||||
end_obj();
|
||||
end_obj(false);
|
||||
start_obj("text");
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx));
|
||||
value_i("state", whisper_model_n_text_state(ctx));
|
||||
value_i("head", whisper_model_n_text_head(ctx));
|
||||
value_i("ctx", whisper_model_n_text_ctx(ctx), false);
|
||||
value_i("state", whisper_model_n_text_state(ctx), false);
|
||||
value_i("head", whisper_model_n_text_head(ctx), false);
|
||||
value_i("layer", whisper_model_n_text_layer(ctx), true);
|
||||
end_obj();
|
||||
value_i("mels", whisper_model_n_mels(ctx));
|
||||
end_obj(false);
|
||||
value_i("mels", whisper_model_n_mels(ctx), false);
|
||||
value_i("ftype", whisper_model_ftype(ctx), true);
|
||||
end_obj();
|
||||
end_obj(false);
|
||||
start_obj("params");
|
||||
value_s("model", params.model.c_str());
|
||||
value_s("language", params.language.c_str());
|
||||
value_s("model", params.model.c_str(), false);
|
||||
value_s("language", params.language.c_str(), false);
|
||||
value_b("translate", params.translate, true);
|
||||
end_obj();
|
||||
end_obj(false);
|
||||
start_obj("result");
|
||||
value_s("language", whisper_lang_str(whisper_full_lang_id(ctx)), true);
|
||||
end_obj();
|
||||
end_obj(false);
|
||||
start_arr("transcription");
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
@@ -516,15 +521,15 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
start_obj();
|
||||
start_obj(nullptr);
|
||||
start_obj("timestamps");
|
||||
value_s("from", to_timestamp(t0, true).c_str());
|
||||
value_s("from", to_timestamp(t0, true).c_str(), false);
|
||||
value_s("to", to_timestamp(t1, true).c_str(), true);
|
||||
end_obj();
|
||||
end_obj(false);
|
||||
start_obj("offsets");
|
||||
value_i("from", t0 * 10);
|
||||
value_i("from", t0 * 10, false);
|
||||
value_i("to", t1 * 10, true);
|
||||
end_obj();
|
||||
end_obj(false);
|
||||
value_s("text", text, true);
|
||||
end_obj(i == (n_segments - 1));
|
||||
}
|
||||
|
||||
@@ -99,17 +99,17 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
fprintf(stderr, "%s: ftype (dst) = %d\n", __func__, ftype_dst);
|
||||
fprintf(stderr, "%s: qntvr (dst) = %d\n", __func__, GGML_QNT_VERSION);
|
||||
|
||||
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fout.write((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
||||
fout.write((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
||||
fout.write((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
||||
fout.write((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
||||
fout.write((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
||||
fout.write((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
||||
fout.write((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
fout.write((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
fout.write((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
fout.write((char *) &ftype_dst, sizeof(hparams.ftype));
|
||||
fout.write((const char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fout.write((const char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
||||
fout.write((const char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
||||
fout.write((const char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
||||
fout.write((const char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
||||
fout.write((const char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
||||
fout.write((const char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
||||
fout.write((const char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
||||
fout.write((const char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
||||
fout.write((const char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
||||
fout.write((const char *) &ftype_dst, sizeof(hparams.ftype));
|
||||
}
|
||||
|
||||
// load mel filters
|
||||
@@ -138,15 +138,17 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
// return false;
|
||||
//}
|
||||
|
||||
std::string word;
|
||||
char word[128];
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
finp.read ((char *) &len, sizeof(len));
|
||||
fout.write((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
finp.read ((char *) word.data(), len);
|
||||
fout.write((char *) word.data(), len);
|
||||
word[len] = '\0';
|
||||
|
||||
finp.read ((char *) word, len);
|
||||
fout.write((char *) word, len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
||||
Reference in New Issue
Block a user