mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2023-11-04 02:52:44 +03:00
ggml : backport llama.cpp updates (close #709)
- About x2 overall performance improvement on Apple Silicon - Results should now be the same for different number of threads (not tested)
This commit is contained in:
113
ggml.h
113
ggml.h
@@ -236,6 +236,7 @@ enum ggml_op {
|
||||
|
||||
GGML_OP_SCALE,
|
||||
GGML_OP_CPY,
|
||||
GGML_OP_CONT,
|
||||
GGML_OP_RESHAPE,
|
||||
GGML_OP_VIEW,
|
||||
GGML_OP_PERMUTE,
|
||||
@@ -253,16 +254,29 @@ enum ggml_op {
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
|
||||
// ggml object
|
||||
struct ggml_object {
|
||||
size_t offs;
|
||||
size_t size;
|
||||
|
||||
struct ggml_object * next;
|
||||
|
||||
char padding[8];
|
||||
};
|
||||
|
||||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||||
|
||||
// n-dimensional tensor
|
||||
struct ggml_tensor {
|
||||
enum ggml_type type;
|
||||
|
||||
int n_dims;
|
||||
int ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = sizeof(type)
|
||||
// nb[1] = nb[0] * ne[0] + padding
|
||||
// nb[i] = nb[i-1] * ne[i-1]
|
||||
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = sizeof(type)
|
||||
// nb[1] = nb[0] * ne[0] + padding
|
||||
// nb[i] = nb[i-1] * ne[i-1]
|
||||
|
||||
// compute data
|
||||
enum ggml_op op;
|
||||
@@ -316,6 +330,7 @@ struct ggml_init_params {
|
||||
// memory pool
|
||||
size_t mem_size; // bytes
|
||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||
bool no_alloc; // don't allocate memory for the tensor data
|
||||
};
|
||||
|
||||
void ggml_time_init(void); // call this once at the beginning of the program
|
||||
@@ -327,8 +342,8 @@ int64_t ggml_cycles_per_ms(void);
|
||||
void ggml_print_object (const struct ggml_object * obj);
|
||||
void ggml_print_objects(const struct ggml_context * ctx);
|
||||
|
||||
int ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
int64_t ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
|
||||
int ggml_blck_size (enum ggml_type type);
|
||||
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||
@@ -343,40 +358,37 @@ size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
|
||||
bool ggml_mlock_supported(void);
|
||||
bool ggml_mlock(struct ggml_context * ctx, char ** err_p);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int *ne);
|
||||
const int64_t *ne);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_1d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0);
|
||||
int64_t ne0);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_2d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1);
|
||||
int64_t ne0,
|
||||
int64_t ne1);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_3d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2);
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_4d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3);
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3);
|
||||
|
||||
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
@@ -514,6 +526,11 @@ struct ggml_tensor * ggml_cpy(
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// make contiguous
|
||||
struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// return view(a), b specifies the new shape
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape(
|
||||
@@ -526,33 +543,43 @@ struct ggml_tensor * ggml_reshape(
|
||||
struct ggml_tensor * ggml_reshape_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1);
|
||||
int64_t ne0,
|
||||
int64_t ne1);
|
||||
|
||||
// return view(a)
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2);
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2);
|
||||
|
||||
// offset in bytes
|
||||
struct ggml_tensor * ggml_view_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int64_t ne0,
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_view_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
size_t nb1, // row stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_view_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
size_t nb1, // row stride in bytes
|
||||
size_t nb2, // slice stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_permute(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@@ -748,8 +775,8 @@ enum ggml_opt_result ggml_opt(
|
||||
// quantization
|
||||
//
|
||||
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
||||
//
|
||||
// system info
|
||||
@@ -768,6 +795,30 @@ int ggml_cpu_has_blas(void);
|
||||
int ggml_cpu_has_sse3(void);
|
||||
int ggml_cpu_has_vsx(void);
|
||||
|
||||
|
||||
//
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
//
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
#define GGML_RESTRICT
|
||||
#else
|
||||
#define GGML_RESTRICT restrict
|
||||
#endif
|
||||
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
|
||||
typedef struct {
|
||||
dequantize_row_q_t dequantize_row_q;
|
||||
quantize_row_q_t quantize_row_q;
|
||||
quantize_row_q_t quantize_row_q_reference;
|
||||
vec_dot_q_t vec_dot_q;
|
||||
} quantize_fns_t;
|
||||
|
||||
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user