mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2023-11-04 02:52:44 +03:00
parallel : adding tool for parallel transformer inference
This commit is contained in:
91
whisper.cpp
91
whisper.cpp
@@ -413,7 +413,6 @@ struct whisper_context {
|
||||
std::vector<float> probs;
|
||||
std::vector<float> logits;
|
||||
|
||||
std::vector<whisper_token_data> tokens_cur;
|
||||
std::vector<whisper_segment> result_all;
|
||||
|
||||
std::vector<whisper_token> prompt_past;
|
||||
@@ -430,7 +429,7 @@ struct whisper_context {
|
||||
//
|
||||
// see the convert-pt-to-ggml.py script for details
|
||||
//
|
||||
bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
bool whisper_model_load(const std::string & fname, const int n_processors, whisper_context & wctx) {
|
||||
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto & model = wctx.model;
|
||||
@@ -700,11 +699,11 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
||||
}
|
||||
|
||||
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
||||
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
||||
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
||||
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
||||
|
||||
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
||||
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
||||
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
||||
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
||||
|
||||
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
||||
|
||||
@@ -934,7 +933,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
// key/value memory for the self-attention layer
|
||||
{
|
||||
const int n_mem = n_text_layer*n_text_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
const int n_elements = n_text_state*n_mem*n_processors;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
@@ -945,7 +944,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
|
||||
const int n_mem = n_text_layer*n_audio_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
const int n_elements = n_text_state*n_mem*n_processors;
|
||||
|
||||
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
||||
@@ -955,7 +954,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
||||
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
||||
|
||||
fprintf(stderr, "%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
|
||||
fprintf(stderr, "%s: memory size = %8.2f MB (%d processors)\n", __func__, memory_size/1024.0/1024.0, n_processors);
|
||||
}
|
||||
|
||||
// load weights
|
||||
@@ -1046,7 +1045,8 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
bool whisper_encode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const int mel_offset) {
|
||||
const int mel_offset,
|
||||
const int processor_id) {
|
||||
const auto & model = wctx.model;
|
||||
const auto & mel_inp = wctx.mel;
|
||||
const auto & hparams = model.hparams;
|
||||
@@ -1400,8 +1400,11 @@ bool whisper_encode(
|
||||
Vcross),
|
||||
Vcross);
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(model.hparams.n_text_layer*n_ctx);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(model.hparams.n_text_layer*n_ctx);
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, offset_k + (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, offset_v + (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
||||
@@ -1434,7 +1437,8 @@ bool whisper_decode(
|
||||
const int n_threads,
|
||||
const whisper_token * tokens,
|
||||
const int n_tokens,
|
||||
const int n_past) {
|
||||
const int n_past,
|
||||
const int processor_id) {
|
||||
const auto & model = wctx.model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
@@ -1529,10 +1533,13 @@ bool whisper_decode(
|
||||
Vcur),
|
||||
Vcur);
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_k)*n_state)*(n_layer*n_ctx);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_v)*n_state)*(n_layer*n_ctx);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, offset_k + (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, offset_v + (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
|
||||
@@ -1550,7 +1557,7 @@ bool whisper_decode(
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, offset_k + il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
@@ -1570,7 +1577,7 @@ bool whisper_decode(
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, offset_v + il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
@@ -1622,15 +1629,18 @@ bool whisper_decode(
|
||||
|
||||
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
||||
|
||||
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(n_layer*M);
|
||||
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(n_layer*M);
|
||||
|
||||
// Kcross is already scaled
|
||||
struct ggml_tensor * Kcross =
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, offset_k + il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
struct ggml_tensor * Vcross =
|
||||
ggml_reshape_3d(ctxL,
|
||||
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
||||
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, offset_v + il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
// ------
|
||||
@@ -2116,7 +2126,26 @@ struct whisper_context * whisper_init(const char * path_model) {
|
||||
|
||||
ctx->t_start_us = t_start_us;
|
||||
|
||||
if (!whisper_model_load(path_model, *ctx)) {
|
||||
if (!whisper_model_load(path_model, 1, *ctx)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->t_load_us = ggml_time_us() - t_start_us;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors) {
|
||||
ggml_time_init();
|
||||
|
||||
whisper_context * ctx = new whisper_context;
|
||||
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
ctx->t_start_us = t_start_us;
|
||||
|
||||
if (!whisper_model_load(path_model, n_processors, *ctx)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
@@ -2167,7 +2196,7 @@ int whisper_set_mel(
|
||||
int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_encode(*ctx, n_threads, offset)) {
|
||||
if (!whisper_encode(*ctx, n_threads, offset, 0)) {
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@@ -2180,7 +2209,7 @@ int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
||||
int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
|
||||
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past, 0)) {
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -2302,6 +2331,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.n_processors =*/ 1,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
@@ -2333,6 +2363,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.n_processors =*/ 1,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
@@ -2369,7 +2400,6 @@ int whisper_full(
|
||||
int n_samples) {
|
||||
// clear old results
|
||||
auto & result_all = ctx->result_all;
|
||||
auto & tokens_cur = ctx->tokens_cur;
|
||||
|
||||
result_all.clear();
|
||||
|
||||
@@ -2379,10 +2409,12 @@ int whisper_full(
|
||||
return -1;
|
||||
}
|
||||
|
||||
const int seek_start = params.offset_ms/10;
|
||||
|
||||
// if length of spectrogram is less than 1s (100 samples), then return
|
||||
// basically don't process anything that is less than 1s
|
||||
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
|
||||
if (whisper_n_len(ctx) < 100) {
|
||||
if (whisper_n_len(ctx) < 100 + seek_start) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -2406,8 +2438,14 @@ int whisper_full(
|
||||
int progress_prev = 0;
|
||||
int progress_step = 5;
|
||||
|
||||
std::vector<whisper_token_data> tokens_cur;
|
||||
tokens_cur.reserve(whisper_n_text_ctx(ctx));
|
||||
|
||||
std::vector<whisper_token> prompt;
|
||||
prompt.reserve(whisper_n_text_ctx(ctx));
|
||||
|
||||
// main loop
|
||||
int seek = params.offset_ms/10;
|
||||
int seek = seek_start;
|
||||
while (true) {
|
||||
int progress_cur = (100*seek)/whisper_n_len(ctx);
|
||||
while (progress_cur >= progress_prev + progress_step) {
|
||||
@@ -2427,9 +2465,8 @@ int whisper_full(
|
||||
return 7;
|
||||
}
|
||||
|
||||
std::vector<whisper_token> prompt;
|
||||
|
||||
int n_past = 0;
|
||||
prompt.clear();
|
||||
|
||||
// if we have already generated some text, use it as a prompt to condition the next generation
|
||||
if (prompt_past.size() > 0) {
|
||||
|
||||
Reference in New Issue
Block a user