ggml : sync latest repo (mostly refactoring changes)

This commit is contained in:
Georgi Gerganov
2023-07-02 21:45:27 +03:00
parent 85ed71aaec
commit d6509bf78d
11 changed files with 2154 additions and 1677 deletions

133
ggml.h
View File

@@ -198,9 +198,11 @@
#define GGML_MAX_PARAMS 256
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4
#define GGML_MAX_NAME 32
#define GGML_MAX_NAME 48
#define GGML_DEFAULT_N_THREADS 4
#define GGML_UNUSED(x) (void)(x)
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
@@ -209,6 +211,30 @@
} \
} while (0)
// used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability.
//
// example:
//
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
//
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
const type prefix##0 = (pointer)->array[0]; \
GGML_UNUSED(prefix##0);
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
const type prefix##1 = (pointer)->array[1]; \
GGML_UNUSED(prefix##1);
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
const type prefix##2 = (pointer)->array[2]; \
GGML_UNUSED(prefix##2);
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
const type prefix##3 = (pointer)->array[3]; \
GGML_UNUSED(prefix##3);
#ifdef __cplusplus
extern "C" {
#endif
@@ -295,12 +321,15 @@ extern "C" {
GGML_OP_SUM,
GGML_OP_SUM_ROWS,
GGML_OP_MEAN,
GGML_OP_ARGMAX,
GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK,
GGML_OP_ABS,
GGML_OP_SGN,
GGML_OP_NEG,
GGML_OP_STEP,
GGML_OP_TANH,
GGML_OP_ELU,
GGML_OP_RELU,
GGML_OP_GELU,
GGML_OP_GELU_QUICK,
@@ -332,9 +361,8 @@ extern "C" {
GGML_OP_ROPE_BACK,
GGML_OP_ALIBI,
GGML_OP_CLAMP,
GGML_OP_CONV_1D_S1_PH,
GGML_OP_CONV_1D_S2_PH,
GGML_OP_CONV_2D_SK_P0,
GGML_OP_CONV_1D,
GGML_OP_CONV_2D,
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
@@ -444,6 +472,9 @@ extern "C" {
// compute types
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
enum ggml_task_type {
GGML_TASK_INIT = 0,
GGML_TASK_COMPUTE,
@@ -469,6 +500,9 @@ extern "C" {
GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void);
GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
@@ -684,6 +718,11 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// argmax along rows
GGML_API struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
GGML_API struct ggml_tensor * ggml_repeat(
@@ -728,6 +767,22 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a);
@@ -1033,13 +1088,15 @@ extern "C" {
// rotary position embedding
// if mode & 1 == 1, skip n_past elements
// if mode & 2 == 1, GPT-NeoX style
// if mode & 4 == 1, ChatGLM style
// TODO: avoid creating a new tensor every time
GGML_API struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode);
int mode,
int n_ctx);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_inplace(
@@ -1047,7 +1104,8 @@ extern "C" {
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode);
int mode,
int n_ctx);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
@@ -1075,58 +1133,33 @@ extern "C" {
float min,
float max);
// TODO: implement general-purpose convolutions
// GGML_API struct ggml_tensor * ggml_conv_1d(
// struct ggml_context * ctx,
// struct ggml_tensor * a,
// struct ggml_tensor * b,
// int s0
// int p0,
// int d0);
//
// GGML_API struct ggml_tensor * ggml_conv_2d(
// struct ggml_context * ctx,
// struct ggml_tensor * a,
// struct ggml_tensor * b,
// int s0,
// int s1,
// int p0,
// int p1,
// int d0,
// int d1);
// padding = half
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation
// not great ..
// example:
// a: 3 80 768 1
// b: 3000 80 1 1
// res: 3000 768 1 1
// used in whisper
GGML_API struct ggml_tensor * ggml_conv_1d_s1_ph(
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
int s0, // stride
int p0, // padding
int d0); // dilation
// used in whisper
GGML_API struct ggml_tensor * ggml_conv_1d_s2_ph(
GGML_API struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
// example:
// a: 16 16 3 768
// b: 1024 1024 3 1
// res: 64 64 768 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
// conv_1d with padding = half
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
int s,
int d);
GGML_API struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,