mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2023-11-04 02:52:44 +03:00
Flash + language support (ref #2)
- Achieved big performance improvement + memory usage reduction - Can now translate / transcribe different languages
This commit is contained in:
72
README.md
72
README.md
@@ -4,7 +4,8 @@ C/C++ port of [OpenAI's Whisper](https://github.com/openai/whisper) speech-to-te
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- ARM_NEON and AVX intrinsics support
|
||||
- F16 support
|
||||
- Mixed F16 / F32 support
|
||||
- Low memory usage (Flash Attention + Flash Forward)
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -27,9 +28,33 @@ For a quick demo, simply run `make base.en`:
|
||||
```bash
|
||||
$ make base.en
|
||||
|
||||
Downloading base.en (142 MB just once)
|
||||
mkdir -p models
|
||||
models/ggml-base.en.bin 100%[=================================>] 141.11M 7.50MB/s in 19s
|
||||
gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
|
||||
g++ -pthread -O3 -std=c++11 -c main.cpp
|
||||
g++ -o main ggml.o main.o
|
||||
./main -h
|
||||
|
||||
usage: ./main [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-T N, --tokens N maximum number of tokens to generate per iteration (default: 64)
|
||||
-v, --verbose verbose output
|
||||
--translate translate from source language to english
|
||||
-ps, --print_special print special tokens
|
||||
-l LANG, --language LANG spoken language (default: en)
|
||||
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
|
||||
-f FNAME, --file FNAME input WAV file path (default: samples/jfk.wav)
|
||||
|
||||
bash ./download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
models/ggml-base.en.bin 100%[=====================================>] 141.11M 7.84MB/s in 18s
|
||||
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
||||
You can now use it like this:
|
||||
|
||||
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
|
||||
===============================================
|
||||
Running base.en on all samples in ./samples ...
|
||||
@@ -52,23 +77,24 @@ whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem_required = 782.00 MB
|
||||
whisper_model_load: mem_required = 611.00 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 186.26 MB
|
||||
whisper_model_load: memory size = 45.66 MB
|
||||
whisper_model_load: ggml ctx size = 163.43 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
log_mel_spectrogram: n_sample = 176000, n_len = 1100
|
||||
log_mel_spectrogram: recording length: 11.000000 s
|
||||
|
||||
main: processing 176000 samples (11.0 sec), 4 threads, lang = english, task = transcribe ...
|
||||
|
||||
And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
|
||||
|
||||
main: load time = 60.62 ms
|
||||
main: mel time = 38.69 ms
|
||||
main: sample time = 2.36 ms
|
||||
main: encode time = 875.63 ms / 145.94 ms per layer
|
||||
main: decode time = 103.17 ms
|
||||
main: total time = 1081.13 ms
|
||||
|
||||
main: load time = 71.89 ms
|
||||
main: mel time = 36.95 ms
|
||||
main: sample time = 2.10 ms
|
||||
main: encode time = 700.94 ms / 116.82 ms per layer
|
||||
main: decode time = 86.14 ms
|
||||
main: total time = 898.72 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
@@ -81,13 +107,18 @@ make samples
|
||||
|
||||
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
|
||||
|
||||
You can download and run the other `.en` models as follows:
|
||||
You can download and run the other models as follows:
|
||||
|
||||
```
|
||||
make tiny.en
|
||||
make tiny
|
||||
make base.en
|
||||
make base
|
||||
make small.en
|
||||
make small
|
||||
make medium.en
|
||||
make medium
|
||||
make large
|
||||
```
|
||||
|
||||
For detailed usage instructions, run: `./main -h`
|
||||
@@ -101,10 +132,8 @@ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
|
||||
|
||||
## Limitations
|
||||
|
||||
- Only `.en` models are supported
|
||||
- Very basic greedy sampling scheme - always pick up the top token
|
||||
- No timestamps
|
||||
- English only
|
||||
- Inference only
|
||||
- Runs on the CPU
|
||||
- Only mono-channel 16-bit WAV is supported
|
||||
@@ -113,10 +142,11 @@ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
|
||||
|
||||
| Model | Disk | Mem |
|
||||
| --- | --- | --- |
|
||||
| tiny.en | 75 MB | ~600 MB |
|
||||
| base.en | 142 MB | ~800 MB |
|
||||
| small.en | 466 MB | ~1.6 GB |
|
||||
| medium.en | 1.5 GB | ~3.5 GB |
|
||||
| tiny | 75 MB | ~460 MB |
|
||||
| base | 142 MB | ~620 MB |
|
||||
| small | 466 MB | ~1.3 GB |
|
||||
| medium | 1.5 GB | ~2.8 GB |
|
||||
| large | 2.9 GB | ~4.9 GB |
|
||||
|
||||
## ggml format
|
||||
|
||||
|
||||
Reference in New Issue
Block a user