Files
zeroshot_topics-nlp/README.rst
2021-11-22 15:38:57 +05:30

85 lines
3.3 KiB
ReStructuredText

zeroshot_topics
===============
.. image:: https://static.pepy.tech/personalized-badge/zeroshot_topics?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads
.. contents:: **Table of Contents**
:backlinks: none
Introduction
------------
Hand-labelled training sets are expensive and time consuming to create usually.
Some datasets call for domain expertise (eg: medical/finance datasets etc).
Given these factors around costs and inflexibility of hand-labelling it would be nice
if there are tools which can help us get started quickly with minimal labelled dataset - enter weak supervision.
**But what if you do not have any labelled data at all? is there a way to still label your data automatically in some way?**
That's where **zeroshot_topics** might be useful! to help you to be up and running quickly.
*zeroshot_topics* let's you do exactly that! it leverages the power of zeroshot-classifiers, transformers & knowledge graphs to automatically suggest labels/topics from your text data. all you need to do is point it towards your data.
Algorithm
---------
The algorithm contains, 4 stages:
.. image:: assets/zstm.png
1. **Keyword & Keyphrase extraction**: This is done with the help of `KeyBERT <https://github.com/MaartenGr/KeyBERT>`_. but really any sort of keyword extractor can be used.
2. **Keyword/Keyphrase expansion via knowledge graphs/Taxanomy**: Then we expand the important keywords we discovered by using some sort of taxanomy/knowledge graph like wordnet, conceptnet etc.
3. **Trace the Hypernyms for the keywords**: Identify the Hypernyms(the root/parent word) and use this as the psuedo-label for the zeroshot classifier.
4. **Zeroshot classification**: Use the Hypernyms and documents to label via zeroshot classifiers.
Note: Currently, this tends to work well on short-texts in general, in the future I intend to experiment and see how we can support long texts as well.
Installation
------------
zeroshot_topics is distributed on `PyPI <https://pypi.org>`_ as a universal
wheel and is available on Linux/macOS and Windows and supports
Python 3.7+ and PyPy.
.. code-block:: bash
$ pip install zeroshot_topics
Usage
------
.. code-block:: python
from zeroshot_topics import ZeroShotTopicFinder
zsmodel = ZeroShotTopicFinder()
text = """can you tell me anything else okay great tell me everything you know about George_Washington.
he was the first president he was well he I'm trying to well he fought in the Civil_War he was a general
in the Civil_War and chopped down his father's cherry tree when he was a little boy he that's it."""
zsmodel.find_topic(text, n_topic=2)
# Output - Topics: ['War', 'Head Of State']
Roadmap
-------
Some things that i plan to add in the coming days, if there's some interest in this work by the community.
- Support custom keyword extractors.
- Support Custom Knowledge-graphs & taxonomy.
- Support Custom Zeroshot-classifiers in the pipeline.
- Add Usecase examples & improve documentation.
- Optimise the overall library and make it a faster.
- Support Long Text documents.
License
-------
zeroshot_topics is distributed under the terms of
- `MIT License <https://choosealicense.com/licenses/mit>`_
- `Apache License, Version 2.0 <https://choosealicense.com/licenses/apache-2.0>`_